mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-12-22 07:10:34 +08:00
Point clouds to volumes
Summary:
Conversion from point clouds to volumes
```
Benchmark Avg Time(μs) Peak Time(μs) Iterations
--------------------------------------------------------------------------------
ADD_POINTS_TO_VOLUMES_10_trilinear_[25, 25, 25]_1000 43219 44067 12
ADD_POINTS_TO_VOLUMES_10_trilinear_[25, 25, 25]_10000 43274 45313 12
ADD_POINTS_TO_VOLUMES_10_trilinear_[25, 25, 25]_100000 46281 47100 11
ADD_POINTS_TO_VOLUMES_10_trilinear_[101, 111, 121]_1000 51224 51912 10
ADD_POINTS_TO_VOLUMES_10_trilinear_[101, 111, 121]_10000 52092 54487 10
ADD_POINTS_TO_VOLUMES_10_trilinear_[101, 111, 121]_100000 59262 60514 9
ADD_POINTS_TO_VOLUMES_10_nearest_[25, 25, 25]_1000 15998 17237 32
ADD_POINTS_TO_VOLUMES_10_nearest_[25, 25, 25]_10000 15964 16994 32
ADD_POINTS_TO_VOLUMES_10_nearest_[25, 25, 25]_100000 16881 19286 30
ADD_POINTS_TO_VOLUMES_10_nearest_[101, 111, 121]_1000 19150 25277 27
ADD_POINTS_TO_VOLUMES_10_nearest_[101, 111, 121]_10000 18746 19999 27
ADD_POINTS_TO_VOLUMES_10_nearest_[101, 111, 121]_100000 22321 24568 23
ADD_POINTS_TO_VOLUMES_100_trilinear_[25, 25, 25]_1000 49693 50288 11
ADD_POINTS_TO_VOLUMES_100_trilinear_[25, 25, 25]_10000 51429 52449 10
ADD_POINTS_TO_VOLUMES_100_trilinear_[25, 25, 25]_100000 237076 237377 3
ADD_POINTS_TO_VOLUMES_100_trilinear_[101, 111, 121]_1000 81875 82597 7
ADD_POINTS_TO_VOLUMES_100_trilinear_[101, 111, 121]_10000 106671 107045 5
ADD_POINTS_TO_VOLUMES_100_trilinear_[101, 111, 121]_100000 483740 484607 2
ADD_POINTS_TO_VOLUMES_100_nearest_[25, 25, 25]_1000 16667 18143 31
ADD_POINTS_TO_VOLUMES_100_nearest_[25, 25, 25]_10000 17682 18922 29
ADD_POINTS_TO_VOLUMES_100_nearest_[25, 25, 25]_100000 65463 67116 8
ADD_POINTS_TO_VOLUMES_100_nearest_[101, 111, 121]_1000 48058 48826 11
ADD_POINTS_TO_VOLUMES_100_nearest_[101, 111, 121]_10000 53529 53998 10
ADD_POINTS_TO_VOLUMES_100_nearest_[101, 111, 121]_100000 123684 123901 5
--------------------------------------------------------------------------------
```
Output with `DEBUG=True`
{F338561209}
Reviewed By: nikhilaravi
Differential Revision: D22017500
fbshipit-source-id: ed3e8ed13940c593841d93211623dd533974012f
This commit is contained in:
committed by
Facebook GitHub Bot
parent
03ee1dbf82
commit
aa9bcaf04c
@@ -14,6 +14,10 @@ from .points_normals import (
|
||||
estimate_pointcloud_local_coord_frames,
|
||||
estimate_pointcloud_normals,
|
||||
)
|
||||
from .points_to_volumes import (
|
||||
add_pointclouds_to_volumes,
|
||||
add_points_features_to_volume_densities_features,
|
||||
)
|
||||
from .sample_points_from_meshes import sample_points_from_meshes
|
||||
from .subdivide_meshes import SubdivideMeshes
|
||||
from .utils import (
|
||||
|
||||
491
pytorch3d/ops/points_to_volumes.py
Normal file
491
pytorch3d/ops/points_to_volumes.py
Normal file
@@ -0,0 +1,491 @@
|
||||
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
|
||||
from typing import TYPE_CHECKING, Optional, Tuple
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from ..structures import Pointclouds, Volumes
|
||||
|
||||
|
||||
def add_pointclouds_to_volumes(
|
||||
pointclouds: "Pointclouds",
|
||||
initial_volumes: "Volumes",
|
||||
mode: str = "trilinear",
|
||||
min_weight: float = 1e-4,
|
||||
) -> "Volumes":
|
||||
"""
|
||||
Add a batch of point clouds represented with a `Pointclouds` structure
|
||||
`pointclouds` to a batch of existing volumes represented with a
|
||||
`Volumes` structure `initial_volumes`.
|
||||
|
||||
More specifically, the method casts a set of weighted votes (the weights are
|
||||
determined based on `mode="trilinear"|"nearest"`) into the pre-initialized
|
||||
`features` and `densities` fields of `initial_volumes`.
|
||||
|
||||
The method returns an updated `Volumes` object that contains a copy
|
||||
of `initial_volumes` with its `features` and `densities` updated with the
|
||||
result of the pointcloud addition.
|
||||
|
||||
Example:
|
||||
```
|
||||
# init a random point cloud
|
||||
pointclouds = Pointclouds(
|
||||
points=torch.randn(4, 100, 3), features=torch.rand(4, 100, 5)
|
||||
)
|
||||
# init an empty volume centered around [0.5, 0.5, 0.5] in world coordinates
|
||||
# with a voxel size of 1.0.
|
||||
initial_volumes = Volumes(
|
||||
features = torch.zeros(4, 5, 25, 25, 25),
|
||||
densities = torch.zeros(4, 1, 25, 25, 25),
|
||||
volume_translation = [-0.5, -0.5, -0.5],
|
||||
voxel_size = 1.0,
|
||||
)
|
||||
# add the pointcloud to the 'initial_volumes' buffer using
|
||||
# trilinear splatting
|
||||
updated_volumes = add_pointclouds_to_volumes(
|
||||
pointclouds=pointclouds,
|
||||
initial_volumes=initial_volumes,
|
||||
mode="trilinear",
|
||||
)
|
||||
```
|
||||
|
||||
Args:
|
||||
pointclouds: Batch of 3D pointclouds represented with a `Pointclouds`
|
||||
structure. Note that `pointclouds.features` have to be defined.
|
||||
initial_volumes: Batch of initial `Volumes` with pre-initialized 1-dimensional
|
||||
densities which contain non-negative numbers corresponding to the
|
||||
opaqueness of each voxel (the higher, the less transparent).
|
||||
mode: The mode of the conversion of individual points into the volume.
|
||||
Set either to `nearest` or `trilinear`:
|
||||
`nearest`: Each 3D point is first rounded to the volumetric
|
||||
lattice. Each voxel is then labeled with the average
|
||||
over features that fall into the given voxel.
|
||||
The gradients of nearest neighbor conversion w.r.t. the
|
||||
3D locations of the points in `pointclouds` are *not* defined.
|
||||
`trilinear`: Each 3D point casts 8 weighted votes to the 8-neighborhood
|
||||
of its floating point coordinate. The weights are
|
||||
determined using a trilinear interpolation scheme.
|
||||
Trilinear splatting is fully differentiable w.r.t. all input arguments.
|
||||
min_weight: A scalar controlling the lowest possible total per-voxel
|
||||
weight used to normalize the features accumulated in a voxel.
|
||||
Only active for `mode==trilinear`.
|
||||
|
||||
Returns:
|
||||
updated_volumes: Output `Volumes` structure containing the conversion result.
|
||||
"""
|
||||
|
||||
if len(initial_volumes) != len(pointclouds):
|
||||
raise ValueError(
|
||||
"'initial_volumes' and 'pointclouds' have to have the same batch size."
|
||||
)
|
||||
|
||||
# obtain the features and densities
|
||||
pcl_feats = pointclouds.features_padded()
|
||||
pcl_3d = pointclouds.points_padded()
|
||||
|
||||
if pcl_feats is None:
|
||||
raise ValueError("'pointclouds' have to have their 'features' defined.")
|
||||
|
||||
# obtain the conversion mask
|
||||
n_per_pcl = pointclouds.num_points_per_cloud().type_as(pcl_feats)
|
||||
mask = torch.arange(n_per_pcl.max(), dtype=pcl_feats.dtype, device=pcl_feats.device)
|
||||
mask = (mask[None, :] < n_per_pcl[:, None]).type_as(mask)
|
||||
|
||||
# convert to the coord frame of the volume
|
||||
pcl_3d_local = initial_volumes.world_to_local_coords(pcl_3d)
|
||||
|
||||
features_new, densities_new = add_points_features_to_volume_densities_features(
|
||||
points_3d=pcl_3d_local,
|
||||
points_features=pcl_feats,
|
||||
volume_features=initial_volumes.features(),
|
||||
volume_densities=initial_volumes.densities(),
|
||||
min_weight=min_weight,
|
||||
grid_sizes=initial_volumes.get_grid_sizes(),
|
||||
mask=mask,
|
||||
mode=mode,
|
||||
)
|
||||
|
||||
return initial_volumes.update_padded(
|
||||
new_densities=densities_new, new_features=features_new
|
||||
)
|
||||
|
||||
|
||||
def add_points_features_to_volume_densities_features(
|
||||
points_3d: torch.Tensor,
|
||||
points_features: torch.Tensor,
|
||||
volume_densities: torch.Tensor,
|
||||
volume_features: Optional[torch.Tensor],
|
||||
mode: str = "trilinear",
|
||||
min_weight: float = 1e-4,
|
||||
mask: Optional[torch.Tensor] = None,
|
||||
grid_sizes: Optional[torch.LongTensor] = None,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Convert a batch of point clouds represented with tensors of per-point
|
||||
3d coordinates and their features to a batch of volumes represented
|
||||
with tensors of densities and features.
|
||||
|
||||
Args:
|
||||
points_3d: Batch of 3D point cloud coordinates of shape
|
||||
`(minibatch, N, 3)` where N is the number of points
|
||||
in each point cloud. Coordinates have to be specified in the
|
||||
local volume coordinates (ranging in [-1, 1]).
|
||||
points_features: Features of shape `(minibatch, N, feature_dim)` corresponding
|
||||
to the points of the input point clouds `pointcloud`.
|
||||
volume_densities: Batch of input feature volume densities of shape
|
||||
`(minibatch, 1, D, H, W)`. Each voxel should
|
||||
contain a non-negative number corresponding to its
|
||||
opaqueness (the higher, the less transparent).
|
||||
volume_features: Batch of input feature volumes of shape
|
||||
`(minibatch, feature_dim, D, H, W)`
|
||||
If set to `None`, the `volume_features` will be automatically
|
||||
instantiatied with a correct size and filled with 0s.
|
||||
mode: The mode of the conversion of individual points into the volume.
|
||||
Set either to `nearest` or `trilinear`:
|
||||
`nearest`: Each 3D point is first rounded to the volumetric
|
||||
lattice. Each voxel is then labeled with the average
|
||||
over features that fall into the given voxel.
|
||||
The gradients of nearest neighbor rounding w.r.t. the
|
||||
input point locations `points_3d` are *not* defined.
|
||||
`trilinear`: Each 3D point casts 8 weighted votes to the 8-neighborhood
|
||||
of its floating point coordinate. The weights are
|
||||
determined using a trilinear interpolation scheme.
|
||||
Trilinear splatting is fully differentiable w.r.t. all input arguments.
|
||||
mask: A binary mask of shape `(minibatch, N)` determining which 3D points
|
||||
are going to be converted to the resulting volume.
|
||||
Set to `None` if all points are valid.
|
||||
min_weight: A scalar controlling the lowest possible total per-voxel
|
||||
weight used to normalize the features accumulated in a voxel.
|
||||
Only active for `mode==trilinear`.
|
||||
Returns:
|
||||
volume_features: Output volume of shape `(minibatch, feature_dim, D, H, W)`
|
||||
volume_densities: Occupancy volume of shape `(minibatch, 1, D, H, W)`
|
||||
containing the total amount of votes cast to each of the voxels.
|
||||
"""
|
||||
|
||||
# number of points in the point cloud, its dim and batch size
|
||||
ba, n_points, feature_dim = points_features.shape
|
||||
ba_volume, density_dim = volume_densities.shape[:2]
|
||||
|
||||
if density_dim != 1:
|
||||
raise ValueError("Only one-dimensional densities are allowed.")
|
||||
|
||||
# init the volumetric grid sizes if uninitialized
|
||||
if grid_sizes is None:
|
||||
grid_sizes = torch.LongTensor(list(volume_densities.shape[2:])).to(
|
||||
volume_densities
|
||||
)
|
||||
|
||||
# flatten densities and features
|
||||
v_shape = volume_densities.shape[2:]
|
||||
volume_densities_flatten = volume_densities.view(ba, -1, 1)
|
||||
n_voxels = volume_densities_flatten.shape[1]
|
||||
|
||||
if volume_features is None:
|
||||
# initialize features if not passed in
|
||||
volume_features_flatten = volume_densities.new_zeros(ba, feature_dim, n_voxels)
|
||||
else:
|
||||
# otherwise just flatten
|
||||
volume_features_flatten = volume_features.view(ba, feature_dim, n_voxels)
|
||||
|
||||
if mode == "trilinear": # do the splatting (trilinear interp)
|
||||
volume_features, volume_densities = splat_points_to_volumes(
|
||||
points_3d,
|
||||
points_features,
|
||||
volume_densities_flatten,
|
||||
volume_features_flatten,
|
||||
grid_sizes,
|
||||
mask=mask,
|
||||
min_weight=min_weight,
|
||||
)
|
||||
elif mode == "nearest": # nearest neighbor interp
|
||||
volume_features, volume_densities = round_points_to_volumes(
|
||||
points_3d,
|
||||
points_features,
|
||||
volume_densities_flatten,
|
||||
volume_features_flatten,
|
||||
grid_sizes,
|
||||
mask=mask,
|
||||
)
|
||||
else:
|
||||
raise ValueError('No such interpolation mode "%s"' % mode)
|
||||
|
||||
# reshape into the volume shape
|
||||
volume_features = volume_features.view(ba, feature_dim, *v_shape)
|
||||
volume_densities = volume_densities.view(ba, 1, *v_shape)
|
||||
|
||||
return volume_features, volume_densities
|
||||
|
||||
|
||||
def _check_points_to_volumes_inputs(
|
||||
points_3d: torch.Tensor,
|
||||
points_features: torch.Tensor,
|
||||
volume_densities: torch.Tensor,
|
||||
volume_features: torch.Tensor,
|
||||
grid_sizes: torch.LongTensor,
|
||||
mask: Optional[torch.Tensor] = None,
|
||||
):
|
||||
|
||||
max_grid_size = grid_sizes.max(dim=0).values
|
||||
if torch.prod(max_grid_size) > volume_densities.shape[1]:
|
||||
raise ValueError(
|
||||
"One of the grid sizes corresponds to a larger number"
|
||||
+ " of elements than the number of elements in volume_densities."
|
||||
)
|
||||
|
||||
_, n_voxels, density_dim = volume_densities.shape
|
||||
|
||||
if density_dim != 1:
|
||||
raise ValueError("Only one-dimensional densities are allowed.")
|
||||
|
||||
ba, n_points, feature_dim = points_features.shape
|
||||
|
||||
if volume_features.shape[1] != feature_dim:
|
||||
raise ValueError(
|
||||
"volume_features have a different number of channels"
|
||||
+ " than points_features."
|
||||
)
|
||||
|
||||
if volume_features.shape[2] != n_voxels:
|
||||
raise ValueError(
|
||||
"volume_features have a different number of elements"
|
||||
+ " than volume_densities."
|
||||
)
|
||||
|
||||
|
||||
def splat_points_to_volumes(
|
||||
points_3d: torch.Tensor,
|
||||
points_features: torch.Tensor,
|
||||
volume_densities: torch.Tensor,
|
||||
volume_features: torch.Tensor,
|
||||
grid_sizes: torch.LongTensor,
|
||||
min_weight: float = 1e-4,
|
||||
mask: Optional[torch.Tensor] = None,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Convert a batch of point clouds to a batch of volumes using trilinear
|
||||
splatting into a volume.
|
||||
|
||||
Args:
|
||||
points_3d: Batch of 3D point cloud coordinates of shape
|
||||
`(minibatch, N, 3)` where N is the number of points
|
||||
in each point cloud. Coordinates have to be specified in the
|
||||
local volume coordinates (ranging in [-1, 1]).
|
||||
points_features: Features of shape `(minibatch, N, feature_dim)`
|
||||
corresponding to the points of the input point cloud `points_3d`.
|
||||
volume_features: Batch of input *flattened* feature volumes
|
||||
of shape `(minibatch, feature_dim, N_voxels)`
|
||||
volume_densities: Batch of input *flattened* feature volume densities
|
||||
of shape `(minibatch, 1, N_voxels)`. Each voxel should
|
||||
contain a non-negative number corresponding to its
|
||||
opaqueness (the higher, the less transparent).
|
||||
grid_sizes: `LongTensor` of shape (minibatch, 3) representing the
|
||||
spatial resolutions of each of the the non-flattened `volumes` tensors.
|
||||
Note that the following has to hold:
|
||||
`torch.prod(grid_sizes, dim=1)==N_voxels`
|
||||
mask: A binary mask of shape `(minibatch, N)` determining which 3D points
|
||||
are going to be converted to the resulting volume.
|
||||
Set to `None` if all points are valid.
|
||||
Returns:
|
||||
volume_features: Output volume of shape `(minibatch, D, N_voxels)`.
|
||||
volume_densities: Occupancy volume of shape `(minibatch, 1, N_voxels)`
|
||||
containing the total amount of votes cast to each of the voxels.
|
||||
"""
|
||||
|
||||
_check_points_to_volumes_inputs(
|
||||
points_3d,
|
||||
points_features,
|
||||
volume_densities,
|
||||
volume_features,
|
||||
grid_sizes,
|
||||
mask=mask,
|
||||
)
|
||||
|
||||
_, n_voxels, density_dim = volume_densities.shape
|
||||
ba, n_points, feature_dim = points_features.shape
|
||||
|
||||
# minibatch x n_points x feature_dim -> minibatch x feature_dim x n_points
|
||||
points_features = points_features.permute(0, 2, 1).contiguous()
|
||||
|
||||
# XYZ = the upper-left volume index of the 8-neigborhood of every point
|
||||
# grid_sizes is of the form (minibatch, depth-height-width)
|
||||
grid_sizes_xyz = grid_sizes[:, [2, 1, 0]]
|
||||
|
||||
# Convert from points_3d in the range [-1, 1] to
|
||||
# indices in the volume grid in the range [0, grid_sizes_xyz-1]
|
||||
points_3d_indices = ((points_3d + 1) * 0.5) * (
|
||||
grid_sizes_xyz[:, None].type_as(points_3d) - 1
|
||||
)
|
||||
XYZ = points_3d_indices.floor().long()
|
||||
rXYZ = points_3d_indices - XYZ.type_as(points_3d) # remainder of floor
|
||||
|
||||
# split into separate coordinate vectors
|
||||
X, Y, Z = XYZ.split(1, dim=2)
|
||||
# rX = remainder after floor = 1-"the weight of each vote into
|
||||
# the X coordinate of the 8-neighborhood"
|
||||
rX, rY, rZ = rXYZ.split(1, dim=2)
|
||||
|
||||
# get random indices for the purpose of adding out-of-bounds values
|
||||
rand_idx = X.new_zeros(X.shape).random_(0, n_voxels)
|
||||
|
||||
# iterate over the x, y, z indices of the 8-neighborhood (xdiff, ydiff, zdiff)
|
||||
for xdiff in (0, 1):
|
||||
X_ = X + xdiff
|
||||
wX = (1 - xdiff) + (2 * xdiff - 1) * rX
|
||||
for ydiff in (0, 1):
|
||||
Y_ = Y + ydiff
|
||||
wY = (1 - ydiff) + (2 * ydiff - 1) * rY
|
||||
for zdiff in (0, 1):
|
||||
Z_ = Z + zdiff
|
||||
wZ = (1 - zdiff) + (2 * zdiff - 1) * rZ
|
||||
|
||||
# weight of each vote into the given cell of 8-neighborhood
|
||||
w = wX * wY * wZ
|
||||
|
||||
# valid - binary indicators of votes that fall into the volume
|
||||
valid = (
|
||||
(0 <= X_)
|
||||
* (X_ < grid_sizes_xyz[:, None, 0:1])
|
||||
* (0 <= Y_)
|
||||
* (Y_ < grid_sizes_xyz[:, None, 1:2])
|
||||
* (0 <= Z_)
|
||||
* (Z_ < grid_sizes_xyz[:, None, 2:3])
|
||||
).long()
|
||||
|
||||
# linearized indices into the volume
|
||||
idx = (Z_ * grid_sizes[:, None, 1:2] + Y_) * grid_sizes[
|
||||
:, None, 2:3
|
||||
] + X_
|
||||
|
||||
# out-of-bounds features added to a random voxel idx with weight=0.
|
||||
idx_valid = idx * valid + rand_idx * (1 - valid)
|
||||
w_valid = w * valid.type_as(w)
|
||||
if mask is not None:
|
||||
w_valid = w_valid * mask.type_as(w)[:, :, None]
|
||||
|
||||
# scatter add casts the votes into the weight accumulator
|
||||
# and the feature accumulator
|
||||
volume_densities.scatter_add_(1, idx_valid, w_valid)
|
||||
|
||||
# reshape idx_valid -> (minibatch, feature_dim, n_points)
|
||||
idx_valid = idx_valid.view(ba, 1, n_points).expand_as(points_features)
|
||||
w_valid = w_valid.view(ba, 1, n_points)
|
||||
|
||||
# volume_features of shape (minibatch, feature_dim, n_voxels)
|
||||
volume_features.scatter_add_(2, idx_valid, w_valid * points_features)
|
||||
|
||||
# divide each feature by the total weight of the votes
|
||||
volume_features = volume_features / volume_densities.view(ba, 1, n_voxels).clamp(
|
||||
min_weight
|
||||
)
|
||||
|
||||
return volume_features, volume_densities
|
||||
|
||||
|
||||
def round_points_to_volumes(
|
||||
points_3d: torch.Tensor,
|
||||
points_features: torch.Tensor,
|
||||
volume_densities: torch.Tensor,
|
||||
volume_features: torch.Tensor,
|
||||
grid_sizes: torch.LongTensor,
|
||||
mask: Optional[torch.Tensor] = None,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Convert a batch of point clouds to a batch of volumes using rounding to the
|
||||
nearest integer coordinate of the volume. Features that fall into the same
|
||||
voxel are averaged.
|
||||
|
||||
Args:
|
||||
points_3d: Batch of 3D point cloud coordinates of shape
|
||||
`(minibatch, N, 3)` where N is the number of points
|
||||
in each point cloud. Coordinates have to be specified in the
|
||||
local volume coordinates (ranging in [-1, 1]).
|
||||
points_features: Features of shape `(minibatch, N, feature_dim)`
|
||||
corresponding to the points of the input point cloud `points_3d`.
|
||||
volume_features: Batch of input *flattened* feature volumes
|
||||
of shape `(minibatch, feature_dim, N_voxels)`
|
||||
volume_densities: Batch of input *flattened* feature volume densities
|
||||
of shape `(minibatch, 1, N_voxels)`. Each voxel should
|
||||
contain a non-negative number corresponding to its
|
||||
opaqueness (the higher, the less transparent).
|
||||
grid_sizes: `LongTensor` of shape (minibatch, 3) representing the
|
||||
spatial resolutions of each of the the non-flattened `volumes` tensors.
|
||||
Note that the following has to hold:
|
||||
`torch.prod(grid_sizes, dim=1)==N_voxels`
|
||||
mask: A binary mask of shape `(minibatch, N)` determining which 3D points
|
||||
are going to be converted to the resulting volume.
|
||||
Set to `None` if all points are valid.
|
||||
Returns:
|
||||
volume_features: Output volume of shape `(minibatch, D, N_voxels)`.
|
||||
volume_densities: Occupancy volume of shape `(minibatch, 1, N_voxels)`
|
||||
containing the total amount of votes cast to each of the voxels.
|
||||
"""
|
||||
|
||||
_check_points_to_volumes_inputs(
|
||||
points_3d,
|
||||
points_features,
|
||||
volume_densities,
|
||||
volume_features,
|
||||
grid_sizes,
|
||||
mask=mask,
|
||||
)
|
||||
|
||||
_, n_voxels, density_dim = volume_densities.shape
|
||||
ba, n_points, feature_dim = points_features.shape
|
||||
|
||||
# minibatch x n_points x feature_dim-> minibatch x feature_dim x n_points
|
||||
points_features = points_features.permute(0, 2, 1).contiguous()
|
||||
|
||||
# round the coordinates to nearest integer
|
||||
# grid_sizes is of the form (minibatch, depth-height-width)
|
||||
grid_sizes_xyz = grid_sizes[:, [2, 1, 0]]
|
||||
XYZ = ((points_3d.detach() + 1) * 0.5) * (
|
||||
grid_sizes_xyz[:, None].type_as(points_3d) - 1
|
||||
)
|
||||
XYZ = torch.round(XYZ).long()
|
||||
|
||||
# split into separate coordinate vectors
|
||||
X, Y, Z = XYZ.split(1, dim=2)
|
||||
|
||||
# get random indices for the purpose of adding out-of-bounds values
|
||||
rand_idx = X.new_zeros(X.shape).random_(0, n_voxels)
|
||||
|
||||
# valid - binary indicators of votes that fall into the volume
|
||||
grid_sizes = grid_sizes.type_as(XYZ)
|
||||
valid = (
|
||||
(0 <= X)
|
||||
* (X < grid_sizes_xyz[:, None, 0:1])
|
||||
* (0 <= Y)
|
||||
* (Y < grid_sizes_xyz[:, None, 1:2])
|
||||
* (0 <= Z)
|
||||
* (Z < grid_sizes_xyz[:, None, 2:3])
|
||||
).long()
|
||||
|
||||
# get random indices for the purpose of adding out-of-bounds values
|
||||
rand_idx = valid.new_zeros(X.shape).random_(0, n_voxels)
|
||||
|
||||
# linearized indices into the volume
|
||||
idx = (Z * grid_sizes[:, None, 1:2] + Y) * grid_sizes[:, None, 2:3] + X
|
||||
|
||||
# out-of-bounds features added to a random voxel idx with weight=0.
|
||||
idx_valid = idx * valid + rand_idx * (1 - valid)
|
||||
w_valid = valid.type_as(volume_features)
|
||||
|
||||
# scatter add casts the votes into the weight accumulator
|
||||
# and the feature accumulator
|
||||
volume_densities.scatter_add_(1, idx_valid, w_valid)
|
||||
|
||||
# reshape idx_valid -> (minibatch, feature_dim, n_points)
|
||||
idx_valid = idx_valid.view(ba, 1, n_points).expand_as(points_features)
|
||||
w_valid = w_valid.view(ba, 1, n_points)
|
||||
|
||||
# volume_features of shape (minibatch, feature_dim, n_voxels)
|
||||
volume_features.scatter_add_(2, idx_valid, w_valid * points_features)
|
||||
|
||||
# divide each feature by the total weight of the votes
|
||||
volume_features = volume_features / volume_densities.view(ba, 1, n_voxels).clamp(
|
||||
1.0
|
||||
)
|
||||
|
||||
return volume_features, volume_densities
|
||||
Reference in New Issue
Block a user