diff --git a/docs/tutorials/deform_source_mesh_to_target_mesh.ipynb b/docs/tutorials/deform_source_mesh_to_target_mesh.ipynb index d36efb0d..e1ef6b8e 100644 --- a/docs/tutorials/deform_source_mesh_to_target_mesh.ipynb +++ b/docs/tutorials/deform_source_mesh_to_target_mesh.ipynb @@ -406,10 +406,10 @@ " loop.set_description('total_loss = %.6f' % loss)\n", " \n", " # Save the losses for plotting\n", - " chamfer_losses.append(loss_chamfer)\n", - " edge_losses.append(loss_edge)\n", - " normal_losses.append(loss_normal)\n", - " laplacian_losses.append(loss_laplacian)\n", + " chamfer_losses.append(float(loss_chamfer.detach().cpu()))\n", + " edge_losses.append(float(loss_edge.detach().cpu()))\n", + " normal_losses.append(float(loss_normal.detach().cpu()))\n", + " laplacian_losses.append(float(loss_laplacian.detach().cpu()))\n", " \n", " # Plot mesh\n", " if i % plot_period == 0:\n", diff --git a/docs/tutorials/fit_textured_mesh.ipynb b/docs/tutorials/fit_textured_mesh.ipynb index 3cdae2d6..f7d08de8 100644 --- a/docs/tutorials/fit_textured_mesh.ipynb +++ b/docs/tutorials/fit_textured_mesh.ipynb @@ -46,8 +46,8 @@ "id": "okLalbR_g7NS" }, "source": [ - "Ensure `torch` and `torchvision` are installed. If `pytorch3d` is not installed, install it using the following cell:" - ] + "Ensure `torch` and `torchvision` are installed. If `pytorch3d` is not installed, install it using the following cell:" + ] }, { "cell_type": "code", @@ -645,7 +645,8 @@ " sum_loss = torch.tensor(0.0, device=device)\n", " for k, l in loss.items():\n", " sum_loss += l * losses[k][\"weight\"]\n", - " losses[k][\"values\"].append(l)\n", + " losses[k][\"values\"].append(float(l.detach().cpu()))\n", + "\n", " \n", " # Print the losses\n", " loop.set_description(\"total_loss = %.6f\" % sum_loss)\n", @@ -829,7 +830,7 @@ " sum_loss = torch.tensor(0.0, device=device)\n", " for k, l in loss.items():\n", " sum_loss += l * losses[k][\"weight\"]\n", - " losses[k][\"values\"].append(l)\n", + " losses[k][\"values\"].append(float(l.detach().cpu()))\n", " \n", " # Print the losses\n", " loop.set_description(\"total_loss = %.6f\" % sum_loss)\n",