mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-12-22 23:30:35 +08:00
move benchmarks to separate directory
Summary: Move benchmarks to a separate directory as tests/ is getting big. Reviewed By: nikhilaravi Differential Revision: D32885462 fbshipit-source-id: a832662a494ee341ab77d95493c95b0af0a83f43
This commit is contained in:
committed by
Facebook GitHub Bot
parent
a6508ac3df
commit
a0e2d2e3c3
105
tests/benchmarks/bm_rasterize_points.py
Normal file
105
tests/benchmarks/bm_rasterize_points.py
Normal file
@@ -0,0 +1,105 @@
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
from itertools import product
|
||||
|
||||
import torch
|
||||
from fvcore.common.benchmark import benchmark
|
||||
from pytorch3d.renderer.points.rasterize_points import (
|
||||
rasterize_points,
|
||||
rasterize_points_python,
|
||||
)
|
||||
from pytorch3d.structures.pointclouds import Pointclouds
|
||||
|
||||
|
||||
def _bm_python_with_init(N, P, img_size=32, radius=0.1, pts_per_pxl=3):
|
||||
torch.manual_seed(231)
|
||||
points = torch.randn(N, P, 3)
|
||||
pointclouds = Pointclouds(points=points)
|
||||
args = (pointclouds, img_size, radius, pts_per_pxl)
|
||||
return lambda: rasterize_points_python(*args)
|
||||
|
||||
|
||||
def _bm_rasterize_points_with_init(
|
||||
N, P, img_size=32, radius=0.1, pts_per_pxl=3, device="cpu", expand_radius=False
|
||||
):
|
||||
torch.manual_seed(231)
|
||||
device = torch.device(device)
|
||||
points = torch.randn(N, P, 3, device=device)
|
||||
pointclouds = Pointclouds(points=points)
|
||||
|
||||
if expand_radius:
|
||||
points_padded = pointclouds.points_padded()
|
||||
radius = torch.full((N, P), fill_value=radius).type_as(points_padded)
|
||||
|
||||
args = (pointclouds, img_size, radius, pts_per_pxl)
|
||||
if device == "cuda":
|
||||
torch.cuda.synchronize(device)
|
||||
|
||||
def fn():
|
||||
rasterize_points(*args)
|
||||
if device == "cuda":
|
||||
torch.cuda.synchronize(device)
|
||||
|
||||
return fn
|
||||
|
||||
|
||||
def bm_python_vs_cpu_vs_cuda() -> None:
|
||||
kwargs_list = []
|
||||
num_meshes = [1]
|
||||
num_points = [10000, 2000]
|
||||
image_size = [128, 256]
|
||||
radius = [1e-3, 0.01]
|
||||
pts_per_pxl = [50, 100]
|
||||
expand = [True, False]
|
||||
test_cases = product(
|
||||
num_meshes, num_points, image_size, radius, pts_per_pxl, expand
|
||||
)
|
||||
for case in test_cases:
|
||||
n, p, im, r, pts, e = case
|
||||
kwargs_list.append(
|
||||
{
|
||||
"N": n,
|
||||
"P": p,
|
||||
"img_size": im,
|
||||
"radius": r,
|
||||
"pts_per_pxl": pts,
|
||||
"device": "cpu",
|
||||
"expand_radius": e,
|
||||
}
|
||||
)
|
||||
|
||||
benchmark(
|
||||
_bm_rasterize_points_with_init, "RASTERIZE_CPU", kwargs_list, warmup_iters=1
|
||||
)
|
||||
kwargs_list += [
|
||||
{"N": 32, "P": 100000, "img_size": 128, "radius": 0.01, "pts_per_pxl": 50},
|
||||
{"N": 8, "P": 200000, "img_size": 512, "radius": 0.01, "pts_per_pxl": 50},
|
||||
{"N": 8, "P": 200000, "img_size": 256, "radius": 0.01, "pts_per_pxl": 50},
|
||||
{
|
||||
"N": 8,
|
||||
"P": 200000,
|
||||
"img_size": (512, 256),
|
||||
"radius": 0.01,
|
||||
"pts_per_pxl": 50,
|
||||
},
|
||||
{
|
||||
"N": 8,
|
||||
"P": 200000,
|
||||
"img_size": (256, 512),
|
||||
"radius": 0.01,
|
||||
"pts_per_pxl": 50,
|
||||
},
|
||||
]
|
||||
for k in kwargs_list:
|
||||
k["device"] = "cuda"
|
||||
benchmark(
|
||||
_bm_rasterize_points_with_init, "RASTERIZE_CUDA", kwargs_list, warmup_iters=1
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
bm_python_vs_cpu_vs_cuda()
|
||||
Reference in New Issue
Block a user