move benchmarks to separate directory

Summary: Move benchmarks to a separate directory as tests/ is getting big.

Reviewed By: nikhilaravi

Differential Revision: D32885462

fbshipit-source-id: a832662a494ee341ab77d95493c95b0af0a83f43
This commit is contained in:
Jeremy Reizenstein
2021-12-07 10:22:17 -08:00
committed by Facebook GitHub Bot
parent a6508ac3df
commit a0e2d2e3c3
43 changed files with 0 additions and 0 deletions

View File

@@ -0,0 +1,80 @@
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from copy import deepcopy
from itertools import product
from fvcore.common.benchmark import benchmark
from test_points_alignment import TestCorrespondingPointsAlignment, TestICP
def bm_iterative_closest_point() -> None:
case_grid = {
"batch_size": [1, 10],
"dim": [3, 20],
"n_points_X": [100, 1000],
"n_points_Y": [100, 1000],
"use_pointclouds": [False],
}
test_args = sorted(case_grid.keys())
test_cases = product(*case_grid.values())
kwargs_list = [dict(zip(test_args, case)) for case in test_cases]
# add the use_pointclouds=True test cases whenever we have dim==3
kwargs_to_add = []
for entry in kwargs_list:
if entry["dim"] == 3:
entry_add = deepcopy(entry)
entry_add["use_pointclouds"] = True
kwargs_to_add.append(entry_add)
kwargs_list.extend(kwargs_to_add)
benchmark(
TestICP.iterative_closest_point,
"IterativeClosestPoint",
kwargs_list,
warmup_iters=1,
)
def bm_corresponding_points_alignment() -> None:
case_grid = {
"allow_reflection": [True, False],
"batch_size": [1, 10, 100],
"dim": [3, 20],
"estimate_scale": [True, False],
"n_points": [100, 10000],
"random_weights": [False, True],
"use_pointclouds": [False],
}
test_args = sorted(case_grid.keys())
test_cases = product(*case_grid.values())
kwargs_list = [dict(zip(test_args, case)) for case in test_cases]
# add the use_pointclouds=True test cases whenever we have dim==3
kwargs_to_add = []
for entry in kwargs_list:
if entry["dim"] == 3:
entry_add = deepcopy(entry)
entry_add["use_pointclouds"] = True
kwargs_to_add.append(entry_add)
kwargs_list.extend(kwargs_to_add)
benchmark(
TestCorrespondingPointsAlignment.corresponding_points_alignment,
"CorrespodingPointsAlignment",
kwargs_list,
warmup_iters=1,
)
if __name__ == "__main__":
bm_corresponding_points_alignment()
bm_iterative_closest_point()