mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-12-19 05:40:34 +08:00
SO3 improvements for stable gradients.
Summary: Improves so3 functions to make gradient computation stable: - Instead of `torch.acos`, uses `acos_linear_extrapolation` which has finite gradients of reasonable magnitude for all inputs. - Adds tests for the latter. The tests of the finiteness of the gradient in `test_so3_exp_singularity`, `test_so3_exp_singularity`, `test_so3_cos_bound` would fail if the `so3` functions would call `torch.acos` instead of `acos_linear_extrapolation`. Reviewed By: bottler Differential Revision: D23326429 fbshipit-source-id: dc296abf2ae3ddfb3942c8146621491a9cb740ee
This commit is contained in:
committed by
Facebook GitHub Bot
parent
dd45123f20
commit
9f14e82b5a
@@ -9,9 +9,10 @@ import torch
|
||||
from common_testing import TestCaseMixin
|
||||
from pytorch3d.transforms.so3 import (
|
||||
hat,
|
||||
so3_exponential_map,
|
||||
so3_exp_map,
|
||||
so3_log_map,
|
||||
so3_relative_angle,
|
||||
so3_rotation_angle,
|
||||
)
|
||||
|
||||
|
||||
@@ -53,10 +54,10 @@ class TestSO3(TestCaseMixin, unittest.TestCase):
|
||||
def test_determinant(self):
|
||||
"""
|
||||
Tests whether the determinants of 3x3 rotation matrices produced
|
||||
by `so3_exponential_map` are (almost) equal to 1.
|
||||
by `so3_exp_map` are (almost) equal to 1.
|
||||
"""
|
||||
log_rot = TestSO3.init_log_rot(batch_size=30)
|
||||
Rs = so3_exponential_map(log_rot)
|
||||
Rs = so3_exp_map(log_rot)
|
||||
dets = torch.det(Rs)
|
||||
self.assertClose(dets, torch.ones_like(dets), atol=1e-4)
|
||||
|
||||
@@ -75,14 +76,14 @@ class TestSO3(TestCaseMixin, unittest.TestCase):
|
||||
|
||||
def test_bad_so3_input_value_err(self):
|
||||
"""
|
||||
Tests whether `so3_exponential_map` and `so3_log_map` correctly return
|
||||
Tests whether `so3_exp_map` and `so3_log_map` correctly return
|
||||
a ValueError if called with an argument of incorrect shape or, in case
|
||||
of `so3_exponential_map`, unexpected trace.
|
||||
of `so3_exp_map`, unexpected trace.
|
||||
"""
|
||||
device = torch.device("cuda:0")
|
||||
log_rot = torch.randn(size=[5, 4], device=device)
|
||||
with self.assertRaises(ValueError) as err:
|
||||
so3_exponential_map(log_rot)
|
||||
so3_exp_map(log_rot)
|
||||
self.assertTrue("Input tensor shape has to be Nx3." in str(err.exception))
|
||||
|
||||
rot = torch.randn(size=[5, 3, 5], device=device)
|
||||
@@ -106,17 +107,22 @@ class TestSO3(TestCaseMixin, unittest.TestCase):
|
||||
|
||||
def test_so3_exp_singularity(self, batch_size: int = 100):
|
||||
"""
|
||||
Tests whether the `so3_exponential_map` is robust to the input vectors
|
||||
Tests whether the `so3_exp_map` is robust to the input vectors
|
||||
the norms of which are close to the numerically unstable region
|
||||
(vectors with low l2-norms).
|
||||
"""
|
||||
# generate random log-rotations with a tiny angle
|
||||
log_rot = TestSO3.init_log_rot(batch_size=batch_size)
|
||||
log_rot_small = log_rot * 1e-6
|
||||
R = so3_exponential_map(log_rot_small)
|
||||
log_rot_small.requires_grad = True
|
||||
R = so3_exp_map(log_rot_small)
|
||||
# tests whether all outputs are finite
|
||||
R_sum = float(R.sum())
|
||||
self.assertEqual(R_sum, R_sum)
|
||||
self.assertTrue(torch.isfinite(R).all())
|
||||
# tests whether the gradient is not None and all finite
|
||||
loss = R.sum()
|
||||
loss.backward()
|
||||
self.assertIsNotNone(log_rot_small.grad)
|
||||
self.assertTrue(torch.isfinite(log_rot_small.grad).all())
|
||||
|
||||
def test_so3_log_singularity(self, batch_size: int = 100):
|
||||
"""
|
||||
@@ -129,6 +135,107 @@ class TestSO3(TestCaseMixin, unittest.TestCase):
|
||||
identity = torch.eye(3, device=device)
|
||||
rot180 = identity * torch.tensor([[1.0, -1.0, -1.0]], device=device)
|
||||
r = [identity, rot180]
|
||||
# add random rotations and random almost orthonormal matrices
|
||||
r.extend(
|
||||
[
|
||||
torch.qr(identity + torch.randn_like(identity) * 1e-4)[0]
|
||||
+ float(i > batch_size // 2) * (0.5 - torch.rand_like(identity)) * 1e-3
|
||||
# this adds random noise to the second half
|
||||
# of the random orthogonal matrices to generate
|
||||
# near-orthogonal matrices
|
||||
for i in range(batch_size - 2)
|
||||
]
|
||||
)
|
||||
r = torch.stack(r)
|
||||
r.requires_grad = True
|
||||
# the log of the rotation matrix r
|
||||
r_log = so3_log_map(r, cos_bound=1e-4, eps=1e-2)
|
||||
# tests whether all outputs are finite
|
||||
self.assertTrue(torch.isfinite(r_log).all())
|
||||
# tests whether the gradient is not None and all finite
|
||||
loss = r.sum()
|
||||
loss.backward()
|
||||
self.assertIsNotNone(r.grad)
|
||||
self.assertTrue(torch.isfinite(r.grad).all())
|
||||
|
||||
def test_so3_log_to_exp_to_log_to_exp(self, batch_size: int = 100):
|
||||
"""
|
||||
Check that
|
||||
`so3_exp_map(so3_log_map(so3_exp_map(log_rot)))
|
||||
== so3_exp_map(log_rot)`
|
||||
for a randomly generated batch of rotation matrix logarithms `log_rot`.
|
||||
Unlike `test_so3_log_to_exp_to_log`, this test checks the
|
||||
correctness of converting a `log_rot` which contains values > math.pi.
|
||||
"""
|
||||
log_rot = 2.0 * TestSO3.init_log_rot(batch_size=batch_size)
|
||||
# check also the singular cases where rot. angle = {0, 2pi}
|
||||
log_rot[:2] = 0
|
||||
log_rot[1, 0] = 2.0 * math.pi - 1e-6
|
||||
rot = so3_exp_map(log_rot, eps=1e-4)
|
||||
rot_ = so3_exp_map(so3_log_map(rot, eps=1e-4, cos_bound=1e-6), eps=1e-6)
|
||||
self.assertClose(rot, rot_, atol=0.01)
|
||||
angles = so3_relative_angle(rot, rot_, cos_bound=1e-6)
|
||||
self.assertClose(angles, torch.zeros_like(angles), atol=0.01)
|
||||
|
||||
def test_so3_log_to_exp_to_log(self, batch_size: int = 100):
|
||||
"""
|
||||
Check that `so3_log_map(so3_exp_map(log_rot))==log_rot` for
|
||||
a randomly generated batch of rotation matrix logarithms `log_rot`.
|
||||
"""
|
||||
log_rot = TestSO3.init_log_rot(batch_size=batch_size)
|
||||
# check also the singular cases where rot. angle = 0
|
||||
log_rot[:1] = 0
|
||||
log_rot_ = so3_log_map(so3_exp_map(log_rot))
|
||||
self.assertClose(log_rot, log_rot_, atol=1e-4)
|
||||
|
||||
def test_so3_exp_to_log_to_exp(self, batch_size: int = 100):
|
||||
"""
|
||||
Check that `so3_exp_map(so3_log_map(R))==R` for
|
||||
a batch of randomly generated rotation matrices `R`.
|
||||
"""
|
||||
rot = TestSO3.init_rot(batch_size=batch_size)
|
||||
non_singular = (so3_rotation_angle(rot) - math.pi).abs() > 1e-2
|
||||
rot = rot[non_singular]
|
||||
rot_ = so3_exp_map(so3_log_map(rot, eps=1e-8, cos_bound=1e-8), eps=1e-8)
|
||||
self.assertClose(rot_, rot, atol=0.1)
|
||||
angles = so3_relative_angle(rot, rot_, cos_bound=1e-4)
|
||||
self.assertClose(angles, torch.zeros_like(angles), atol=0.1)
|
||||
|
||||
def test_so3_cos_relative_angle(self, batch_size: int = 100):
|
||||
"""
|
||||
Check that `so3_relative_angle(R1, R2, cos_angle=False).cos()`
|
||||
is the same as `so3_relative_angle(R1, R2, cos_angle=True)` for
|
||||
batches of randomly generated rotation matrices `R1` and `R2`.
|
||||
"""
|
||||
rot1 = TestSO3.init_rot(batch_size=batch_size)
|
||||
rot2 = TestSO3.init_rot(batch_size=batch_size)
|
||||
angles = so3_relative_angle(rot1, rot2, cos_angle=False).cos()
|
||||
angles_ = so3_relative_angle(rot1, rot2, cos_angle=True)
|
||||
self.assertClose(angles, angles_, atol=1e-4)
|
||||
|
||||
def test_so3_cos_angle(self, batch_size: int = 100):
|
||||
"""
|
||||
Check that `so3_rotation_angle(R, cos_angle=False).cos()`
|
||||
is the same as `so3_rotation_angle(R, cos_angle=True)` for
|
||||
a batch of randomly generated rotation matrices `R`.
|
||||
"""
|
||||
rot = TestSO3.init_rot(batch_size=batch_size)
|
||||
angles = so3_rotation_angle(rot, cos_angle=False).cos()
|
||||
angles_ = so3_rotation_angle(rot, cos_angle=True)
|
||||
self.assertClose(angles, angles_, atol=1e-4)
|
||||
|
||||
def test_so3_cos_bound(self, batch_size: int = 100):
|
||||
"""
|
||||
Checks that for an identity rotation `R=I`, the so3_rotation_angle returns
|
||||
non-finite gradients when `cos_bound=None` and finite gradients
|
||||
for `cos_bound > 0.0`.
|
||||
"""
|
||||
# generate random rotations with a tiny angle to generate cases
|
||||
# with the gradient singularity
|
||||
device = torch.device("cuda:0")
|
||||
identity = torch.eye(3, device=device)
|
||||
rot180 = identity * torch.tensor([[1.0, -1.0, -1.0]], device=device)
|
||||
r = [identity, rot180]
|
||||
r.extend(
|
||||
[
|
||||
torch.qr(identity + torch.randn_like(identity) * 1e-4)[0]
|
||||
@@ -136,65 +243,25 @@ class TestSO3(TestCaseMixin, unittest.TestCase):
|
||||
]
|
||||
)
|
||||
r = torch.stack(r)
|
||||
# the log of the rotation matrix r
|
||||
r_log = so3_log_map(r)
|
||||
# tests whether all outputs are finite
|
||||
r_sum = float(r_log.sum())
|
||||
self.assertEqual(r_sum, r_sum)
|
||||
|
||||
def test_so3_log_to_exp_to_log_to_exp(self, batch_size: int = 100):
|
||||
"""
|
||||
Check that
|
||||
`so3_exponential_map(so3_log_map(so3_exponential_map(log_rot)))
|
||||
== so3_exponential_map(log_rot)`
|
||||
for a randomly generated batch of rotation matrix logarithms `log_rot`.
|
||||
Unlike `test_so3_log_to_exp_to_log`, this test checks the
|
||||
correctness of converting a `log_rot` which contains values > math.pi.
|
||||
"""
|
||||
log_rot = 2.0 * TestSO3.init_log_rot(batch_size=batch_size)
|
||||
# check also the singular cases where rot. angle = {0, pi, 2pi, 3pi}
|
||||
log_rot[:3] = 0
|
||||
log_rot[1, 0] = math.pi
|
||||
log_rot[2, 0] = 2.0 * math.pi
|
||||
log_rot[3, 0] = 3.0 * math.pi
|
||||
rot = so3_exponential_map(log_rot, eps=1e-8)
|
||||
rot_ = so3_exponential_map(so3_log_map(rot, eps=1e-8), eps=1e-8)
|
||||
angles = so3_relative_angle(rot, rot_)
|
||||
self.assertClose(angles, torch.zeros_like(angles), atol=0.01)
|
||||
|
||||
def test_so3_log_to_exp_to_log(self, batch_size: int = 100):
|
||||
"""
|
||||
Check that `so3_log_map(so3_exponential_map(log_rot))==log_rot` for
|
||||
a randomly generated batch of rotation matrix logarithms `log_rot`.
|
||||
"""
|
||||
log_rot = TestSO3.init_log_rot(batch_size=batch_size)
|
||||
# check also the singular cases where rot. angle = 0
|
||||
log_rot[:1] = 0
|
||||
log_rot_ = so3_log_map(so3_exponential_map(log_rot))
|
||||
self.assertClose(log_rot, log_rot_, atol=1e-4)
|
||||
|
||||
def test_so3_exp_to_log_to_exp(self, batch_size: int = 100):
|
||||
"""
|
||||
Check that `so3_exponential_map(so3_log_map(R))==R` for
|
||||
a batch of randomly generated rotation matrices `R`.
|
||||
"""
|
||||
rot = TestSO3.init_rot(batch_size=batch_size)
|
||||
rot_ = so3_exponential_map(so3_log_map(rot, eps=1e-8), eps=1e-8)
|
||||
angles = so3_relative_angle(rot, rot_)
|
||||
# TODO: a lot of precision lost here ...
|
||||
self.assertClose(angles, torch.zeros_like(angles), atol=0.1)
|
||||
|
||||
def test_so3_cos_angle(self, batch_size: int = 100):
|
||||
"""
|
||||
Check that `so3_relative_angle(R1, R2, cos_angle=False).cos()`
|
||||
is the same as `so3_relative_angle(R1, R2, cos_angle=True)`
|
||||
batches of randomly generated rotation matrices `R1` and `R2`.
|
||||
"""
|
||||
rot1 = TestSO3.init_rot(batch_size=batch_size)
|
||||
rot2 = TestSO3.init_rot(batch_size=batch_size)
|
||||
angles = so3_relative_angle(rot1, rot2, cos_angle=False).cos()
|
||||
angles_ = so3_relative_angle(rot1, rot2, cos_angle=True)
|
||||
self.assertClose(angles, angles_)
|
||||
r.requires_grad = True
|
||||
for is_grad_finite in (True, False):
|
||||
# clear the gradients and decide the cos_bound:
|
||||
# for is_grad_finite we run so3_rotation_angle with cos_bound
|
||||
# set to a small float, otherwise we set to 0.0
|
||||
r.grad = None
|
||||
cos_bound = 1e-4 if is_grad_finite else 0.0
|
||||
# compute the angles of r
|
||||
angles = so3_rotation_angle(r, cos_bound=cos_bound)
|
||||
# tests whether all outputs are finite in both cases
|
||||
self.assertTrue(torch.isfinite(angles).all())
|
||||
# compute the gradients
|
||||
loss = angles.sum()
|
||||
loss.backward()
|
||||
# tests whether the gradient is not None for both cases
|
||||
self.assertIsNotNone(r.grad)
|
||||
if is_grad_finite:
|
||||
# all grad values have to be finite
|
||||
self.assertTrue(torch.isfinite(r.grad).all())
|
||||
|
||||
@staticmethod
|
||||
def so3_expmap(batch_size: int = 10):
|
||||
@@ -202,7 +269,7 @@ class TestSO3(TestCaseMixin, unittest.TestCase):
|
||||
torch.cuda.synchronize()
|
||||
|
||||
def compute_rots():
|
||||
so3_exponential_map(log_rot)
|
||||
so3_exp_map(log_rot)
|
||||
torch.cuda.synchronize()
|
||||
|
||||
return compute_rots
|
||||
|
||||
Reference in New Issue
Block a user