mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-12-22 23:30:35 +08:00
coarse rasterization bug fix
Summary: Fix a bug which resulted in a rendering artifacts if the image size was not a multiple of 16. Fix: Revert coarse rasterization to original implementation and only update fine rasterization to reverse the ordering of Y and X axis. This is much simpler than the previous approach! Additional changes: - updated mesh rendering end-end tests to check outputs from both naive and coarse to fine rasterization. - added pointcloud rendering end-end tests Reviewed By: gkioxari Differential Revision: D21102725 fbshipit-source-id: 2e7e1b013dd6dd12b3a00b79eb8167deddb2e89a
This commit is contained in:
committed by
Facebook GitHub Bot
parent
1e4749602d
commit
9ef1ee8455
173
tests/test_render_points.py
Normal file
173
tests/test_render_points.py
Normal file
@@ -0,0 +1,173 @@
|
||||
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
|
||||
|
||||
|
||||
"""
|
||||
Sanity checks for output images from the pointcloud renderer.
|
||||
"""
|
||||
import unittest
|
||||
import warnings
|
||||
from os import path
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from common_testing import TestCaseMixin, load_rgb_image
|
||||
from PIL import Image
|
||||
from pytorch3d.renderer.cameras import (
|
||||
OpenGLOrthographicCameras,
|
||||
OpenGLPerspectiveCameras,
|
||||
look_at_view_transform,
|
||||
)
|
||||
from pytorch3d.renderer.points import (
|
||||
AlphaCompositor,
|
||||
NormWeightedCompositor,
|
||||
PointsRasterizationSettings,
|
||||
PointsRasterizer,
|
||||
PointsRenderer,
|
||||
)
|
||||
from pytorch3d.structures.pointclouds import Pointclouds
|
||||
from pytorch3d.utils.ico_sphere import ico_sphere
|
||||
|
||||
|
||||
# If DEBUG=True, save out images generated in the tests for debugging.
|
||||
# All saved images have prefix DEBUG_
|
||||
DEBUG = False
|
||||
DATA_DIR = Path(__file__).resolve().parent / "data"
|
||||
|
||||
|
||||
class TestRenderPoints(TestCaseMixin, unittest.TestCase):
|
||||
def test_simple_sphere(self):
|
||||
device = torch.device("cuda:0")
|
||||
sphere_mesh = ico_sphere(1, device)
|
||||
verts_padded = sphere_mesh.verts_padded()
|
||||
# Shift vertices to check coordinate frames are correct.
|
||||
verts_padded[..., 1] += 0.2
|
||||
verts_padded[..., 0] += 0.2
|
||||
pointclouds = Pointclouds(
|
||||
points=verts_padded, features=torch.ones_like(verts_padded)
|
||||
)
|
||||
R, T = look_at_view_transform(2.7, 0.0, 0.0)
|
||||
cameras = OpenGLPerspectiveCameras(device=device, R=R, T=T)
|
||||
raster_settings = PointsRasterizationSettings(
|
||||
image_size=256, radius=5e-2, points_per_pixel=1
|
||||
)
|
||||
rasterizer = PointsRasterizer(cameras=cameras, raster_settings=raster_settings)
|
||||
compositor = NormWeightedCompositor()
|
||||
renderer = PointsRenderer(rasterizer=rasterizer, compositor=compositor)
|
||||
|
||||
# Load reference image
|
||||
filename = "simple_pointcloud_sphere.png"
|
||||
image_ref = load_rgb_image("test_%s" % filename, DATA_DIR)
|
||||
|
||||
for bin_size in [0, None]:
|
||||
# Check both naive and coarse to fine produce the same output.
|
||||
renderer.rasterizer.raster_settings.bin_size = bin_size
|
||||
images = renderer(pointclouds)
|
||||
rgb = images[0, ..., :3].squeeze().cpu()
|
||||
if DEBUG:
|
||||
filename = "DEBUG_%s" % filename
|
||||
Image.fromarray((rgb.numpy() * 255).astype(np.uint8)).save(
|
||||
DATA_DIR / filename
|
||||
)
|
||||
self.assertClose(rgb, image_ref)
|
||||
|
||||
def test_pointcloud_with_features(self):
|
||||
device = torch.device("cuda:0")
|
||||
file_dir = Path(__file__).resolve().parent.parent / "docs/tutorials/data"
|
||||
pointcloud_filename = file_dir / "PittsburghBridge/pointcloud.npz"
|
||||
|
||||
# Note, this file is too large to check in to the repo.
|
||||
# Download the file to run the test locally.
|
||||
if not path.exists(pointcloud_filename):
|
||||
url = "https://dl.fbaipublicfiles.com/pytorch3d/data/PittsburghBridge/pointcloud.npz"
|
||||
msg = (
|
||||
"pointcloud.npz not found, download from %s, save it at the path %s, and rerun"
|
||||
% (url, pointcloud_filename)
|
||||
)
|
||||
warnings.warn(msg)
|
||||
return True
|
||||
|
||||
# Load point cloud
|
||||
pointcloud = np.load(pointcloud_filename)
|
||||
verts = torch.Tensor(pointcloud["verts"]).to(device)
|
||||
rgb_feats = torch.Tensor(pointcloud["rgb"]).to(device)
|
||||
|
||||
verts.requires_grad = True
|
||||
rgb_feats.requires_grad = True
|
||||
point_cloud = Pointclouds(points=[verts], features=[rgb_feats])
|
||||
|
||||
R, T = look_at_view_transform(20, 10, 0)
|
||||
cameras = OpenGLOrthographicCameras(device=device, R=R, T=T, znear=0.01)
|
||||
|
||||
raster_settings = PointsRasterizationSettings(
|
||||
# Set image_size so it is not a multiple of 16 (min bin_size)
|
||||
# in order to confirm that there are no errors in coarse rasterization.
|
||||
image_size=500,
|
||||
radius=0.003,
|
||||
points_per_pixel=10,
|
||||
)
|
||||
|
||||
renderer = PointsRenderer(
|
||||
rasterizer=PointsRasterizer(
|
||||
cameras=cameras, raster_settings=raster_settings
|
||||
),
|
||||
compositor=AlphaCompositor(),
|
||||
)
|
||||
|
||||
images = renderer(point_cloud)
|
||||
|
||||
# Load reference image
|
||||
filename = "bridge_pointcloud.png"
|
||||
image_ref = load_rgb_image("test_%s" % filename, DATA_DIR)
|
||||
|
||||
for bin_size in [0, None]:
|
||||
# Check both naive and coarse to fine produce the same output.
|
||||
renderer.rasterizer.raster_settings.bin_size = bin_size
|
||||
images = renderer(point_cloud)
|
||||
rgb = images[0, ..., :3].squeeze().cpu()
|
||||
if DEBUG:
|
||||
filename = "DEBUG_%s" % filename
|
||||
Image.fromarray((rgb.detach().numpy() * 255).astype(np.uint8)).save(
|
||||
DATA_DIR / filename
|
||||
)
|
||||
self.assertClose(rgb, image_ref, atol=0.015)
|
||||
|
||||
# Check grad exists.
|
||||
grad_images = torch.randn_like(images)
|
||||
images.backward(grad_images)
|
||||
self.assertIsNotNone(verts.grad)
|
||||
self.assertIsNotNone(rgb_feats.grad)
|
||||
|
||||
def test_simple_sphere_batched(self):
|
||||
device = torch.device("cuda:0")
|
||||
sphere_mesh = ico_sphere(1, device)
|
||||
verts_padded = sphere_mesh.verts_padded()
|
||||
verts_padded[..., 1] += 0.2
|
||||
verts_padded[..., 0] += 0.2
|
||||
pointclouds = Pointclouds(
|
||||
points=verts_padded, features=torch.ones_like(verts_padded)
|
||||
)
|
||||
batch_size = 20
|
||||
pointclouds = pointclouds.extend(batch_size)
|
||||
R, T = look_at_view_transform(2.7, 0.0, 0.0)
|
||||
cameras = OpenGLPerspectiveCameras(device=device, R=R, T=T)
|
||||
raster_settings = PointsRasterizationSettings(
|
||||
image_size=256, radius=5e-2, points_per_pixel=1
|
||||
)
|
||||
rasterizer = PointsRasterizer(cameras=cameras, raster_settings=raster_settings)
|
||||
compositor = NormWeightedCompositor()
|
||||
renderer = PointsRenderer(rasterizer=rasterizer, compositor=compositor)
|
||||
|
||||
# Load reference image
|
||||
filename = "simple_pointcloud_sphere.png"
|
||||
image_ref = load_rgb_image("test_%s" % filename, DATA_DIR)
|
||||
|
||||
images = renderer(pointclouds)
|
||||
for i in range(batch_size):
|
||||
rgb = images[i, ..., :3].squeeze().cpu()
|
||||
if i == 0 and DEBUG:
|
||||
filename = "DEBUG_%s" % filename
|
||||
Image.fromarray((rgb.numpy() * 255).astype(np.uint8)).save(
|
||||
DATA_DIR / filename
|
||||
)
|
||||
self.assertClose(rgb, image_ref)
|
||||
Reference in New Issue
Block a user