Make feature extractor pluggable

Summary: Make ResNetFeatureExtractor be an implementation of FeatureExtractorBase.

Reviewed By: davnov134

Differential Revision: D35433098

fbshipit-source-id: 0664a9166a88e150231cfe2eceba017ae55aed3a
This commit is contained in:
Jeremy Reizenstein
2022-05-18 08:50:18 -07:00
committed by Facebook GitHub Bot
parent cd7b885169
commit 9ec9d057cc
12 changed files with 151 additions and 57 deletions

View File

@@ -17,7 +17,7 @@ sampling_mode_training: mask_sample
sampling_mode_evaluation: full_grid
raysampler_class_type: AdaptiveRaySampler
renderer_class_type: LSTMRenderer
image_feature_extractor_enabled: true
image_feature_extractor_class_type: ResNetFeatureExtractor
view_pooler_enabled: true
implicit_function_class_type: IdrFeatureField
loss_weights:
@@ -73,7 +73,7 @@ renderer_LSTMRenderer_args:
hidden_size: 16
n_feature_channels: 256
verbose: false
image_feature_extractor_args:
image_feature_extractor_ResNetFeatureExtractor_args:
name: resnet34
pretrained: true
stages:

View File

@@ -9,6 +9,9 @@ import unittest
from omegaconf import OmegaConf
from pytorch3d.implicitron.models.autodecoder import Autodecoder
from pytorch3d.implicitron.models.feature_extractor.resnet_feature_extractor import (
ResNetFeatureExtractor,
)
from pytorch3d.implicitron.models.generic_model import GenericModel
from pytorch3d.implicitron.models.implicit_function.idr_feature_field import (
IdrFeatureField,
@@ -63,7 +66,6 @@ class TestGenericModel(unittest.TestCase):
provide_resnet34()
args = get_default_args(GenericModel)
args.view_pooler_enabled = True
args.image_feature_extractor_enabled = True
args.view_pooler_args.feature_aggregator_class_type = (
"AngleWeightedIdentityFeatureAggregator"
)
@@ -77,9 +79,13 @@ class TestGenericModel(unittest.TestCase):
)
self.assertIsInstance(gm._implicit_functions[0]._fn, IdrFeatureField)
self.assertIsInstance(gm.sequence_autodecoder, Autodecoder)
self.assertIsInstance(gm.image_feature_extractor, ResNetFeatureExtractor)
self.assertFalse(hasattr(gm, "implicit_function"))
instance_args = OmegaConf.structured(gm)
if DEBUG:
full_yaml = OmegaConf.to_yaml(instance_args, sort_keys=False)
(DATA_DIR / "overrides_full.yaml").write_text(full_yaml)
remove_unused_components(instance_args)
yaml = OmegaConf.to_yaml(instance_args, sort_keys=False)
if DEBUG:

View File

@@ -33,7 +33,7 @@ class TestGenericModel(unittest.TestCase):
# Simple test of a forward and backward pass of the default GenericModel.
device = torch.device("cuda:1")
expand_args_fields(GenericModel)
model = GenericModel()
model = GenericModel(render_image_height=80, render_image_width=80)
model.to(device)
self._one_model_test(model, device)
@@ -149,6 +149,37 @@ class TestGenericModel(unittest.TestCase):
)
self.assertGreater(train_preds["objective"].item(), 0)
def test_viewpool(self):
device = torch.device("cuda:1")
args = get_default_args(GenericModel)
args.view_pooler_enabled = True
args.image_feature_extractor_ResNetFeatureExtractor_args.add_masks = False
model = GenericModel(**args)
model.to(device)
n_train_cameras = 2
R, T = look_at_view_transform(azim=torch.rand(n_train_cameras) * 360)
cameras = PerspectiveCameras(R=R, T=T, device=device)
defaulted_args = {
"fg_probability": None,
"depth_map": None,
"mask_crop": None,
}
target_image_rgb = torch.rand(
(n_train_cameras, 3, model.render_image_height, model.render_image_width),
device=device,
)
train_preds = model(
camera=cameras,
evaluation_mode=EvaluationMode.TRAINING,
image_rgb=target_image_rgb,
sequence_name=["a"] * n_train_cameras,
**defaulted_args,
)
self.assertGreater(train_preds["objective"].item(), 0)
def _random_input_tensor(
N: int,