mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 20:02:49 +08:00
Fix circular import
Summary: This fixes a recently introduced circular import: the problem went unnoticed by having `pytorch3d.renderer` imported first... Reviewed By: bottler Differential Revision: D29686235 fbshipit-source-id: 4b9f2faecec2cc8347ee259cfc359dc9e4f67784
This commit is contained in:
parent
5eec5e289e
commit
9a14f54e8b
176
pytorch3d/renderer/camera_conversions.py
Normal file
176
pytorch3d/renderer/camera_conversions.py
Normal file
@ -0,0 +1,176 @@
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
import logging
|
||||
from typing import Tuple
|
||||
|
||||
import torch
|
||||
|
||||
from ..transforms import matrix_to_rotation_6d
|
||||
from .cameras import PerspectiveCameras
|
||||
|
||||
|
||||
LOGGER = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def _cameras_from_opencv_projection(
|
||||
R: torch.Tensor,
|
||||
tvec: torch.Tensor,
|
||||
camera_matrix: torch.Tensor,
|
||||
image_size: torch.Tensor,
|
||||
) -> PerspectiveCameras:
|
||||
focal_length = torch.stack([camera_matrix[:, 0, 0], camera_matrix[:, 1, 1]], dim=-1)
|
||||
principal_point = camera_matrix[:, :2, 2]
|
||||
|
||||
# Retype the image_size correctly and flip to width, height.
|
||||
image_size_wh = image_size.to(R).flip(dims=(1,))
|
||||
|
||||
# Get the PyTorch3D focal length and principal point.
|
||||
focal_pytorch3d = focal_length / (0.5 * image_size_wh)
|
||||
p0_pytorch3d = -(principal_point / (0.5 * image_size_wh) - 1)
|
||||
|
||||
# For R, T we flip x, y axes (opencv screen space has an opposite
|
||||
# orientation of screen axes).
|
||||
# We also transpose R (opencv multiplies points from the opposite=left side).
|
||||
R_pytorch3d = R.clone().permute(0, 2, 1)
|
||||
T_pytorch3d = tvec.clone()
|
||||
R_pytorch3d[:, :, :2] *= -1
|
||||
T_pytorch3d[:, :2] *= -1
|
||||
|
||||
return PerspectiveCameras(
|
||||
R=R_pytorch3d,
|
||||
T=T_pytorch3d,
|
||||
focal_length=focal_pytorch3d,
|
||||
principal_point=p0_pytorch3d,
|
||||
)
|
||||
|
||||
|
||||
def _opencv_from_cameras_projection(
|
||||
cameras: PerspectiveCameras,
|
||||
image_size: torch.Tensor,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
R_pytorch3d = cameras.R.clone() # pyre-ignore
|
||||
T_pytorch3d = cameras.T.clone() # pyre-ignore
|
||||
focal_pytorch3d = cameras.focal_length
|
||||
p0_pytorch3d = cameras.principal_point
|
||||
T_pytorch3d[:, :2] *= -1
|
||||
R_pytorch3d[:, :, :2] *= -1
|
||||
tvec = T_pytorch3d
|
||||
R = R_pytorch3d.permute(0, 2, 1)
|
||||
|
||||
# Retype the image_size correctly and flip to width, height.
|
||||
image_size_wh = image_size.to(R).flip(dims=(1,))
|
||||
|
||||
principal_point = (-p0_pytorch3d + 1.0) * (0.5 * image_size_wh) # pyre-ignore
|
||||
focal_length = focal_pytorch3d * (0.5 * image_size_wh)
|
||||
|
||||
camera_matrix = torch.zeros_like(R)
|
||||
camera_matrix[:, :2, 2] = principal_point
|
||||
camera_matrix[:, 2, 2] = 1.0
|
||||
camera_matrix[:, 0, 0] = focal_length[:, 0]
|
||||
camera_matrix[:, 1, 1] = focal_length[:, 1]
|
||||
return R, tvec, camera_matrix
|
||||
|
||||
|
||||
def _pulsar_from_opencv_projection(
|
||||
R: torch.Tensor,
|
||||
tvec: torch.Tensor,
|
||||
camera_matrix: torch.Tensor,
|
||||
image_size: torch.Tensor,
|
||||
znear: float = 0.1,
|
||||
) -> torch.Tensor:
|
||||
assert len(camera_matrix.size()) == 3, "This function requires batched inputs!"
|
||||
assert len(R.size()) == 3, "This function requires batched inputs!"
|
||||
assert len(tvec.size()) in (2, 3), "This function reuqires batched inputs!"
|
||||
|
||||
# Validate parameters.
|
||||
image_size_wh = image_size.to(R).flip(dims=(1,))
|
||||
assert torch.all(
|
||||
image_size_wh > 0
|
||||
), "height and width must be positive but min is: %s" % (
|
||||
str(image_size_wh.min().item())
|
||||
)
|
||||
assert (
|
||||
camera_matrix.size(1) == 3 and camera_matrix.size(2) == 3
|
||||
), "Incorrect camera matrix shape: expected 3x3 but got %dx%d" % (
|
||||
camera_matrix.size(1),
|
||||
camera_matrix.size(2),
|
||||
)
|
||||
assert (
|
||||
R.size(1) == 3 and R.size(2) == 3
|
||||
), "Incorrect R shape: expected 3x3 but got %dx%d" % (
|
||||
R.size(1),
|
||||
R.size(2),
|
||||
)
|
||||
if len(tvec.size()) == 2:
|
||||
tvec = tvec.unsqueeze(2)
|
||||
assert (
|
||||
tvec.size(1) == 3 and tvec.size(2) == 1
|
||||
), "Incorrect tvec shape: expected 3x1 but got %dx%d" % (
|
||||
tvec.size(1),
|
||||
tvec.size(2),
|
||||
)
|
||||
# Check batch size.
|
||||
batch_size = camera_matrix.size(0)
|
||||
assert R.size(0) == batch_size, "Expected R to have batch size %d. Has size %d." % (
|
||||
batch_size,
|
||||
R.size(0),
|
||||
)
|
||||
assert (
|
||||
tvec.size(0) == batch_size
|
||||
), "Expected tvec to have batch size %d. Has size %d." % (
|
||||
batch_size,
|
||||
tvec.size(0),
|
||||
)
|
||||
# Check image sizes.
|
||||
image_w = image_size_wh[0, 0]
|
||||
image_h = image_size_wh[0, 1]
|
||||
assert torch.all(
|
||||
image_size_wh[:, 0] == image_w
|
||||
), "All images in a batch must have the same width!"
|
||||
assert torch.all(
|
||||
image_size_wh[:, 1] == image_h
|
||||
), "All images in a batch must have the same height!"
|
||||
# Focal length.
|
||||
fx = camera_matrix[:, 0, 0].unsqueeze(1)
|
||||
fy = camera_matrix[:, 1, 1].unsqueeze(1)
|
||||
# Check that we introduce less than 1% error by averaging the focal lengths.
|
||||
fx_y = fx / fy
|
||||
if torch.any(fx_y > 1.01) or torch.any(fx_y < 0.99):
|
||||
LOGGER.warning(
|
||||
"Pulsar only supports a single focal lengths. For converting OpenCV "
|
||||
"focal lengths, we average them for x and y directions. "
|
||||
"The focal lengths for x and y you provided differ by more than 1%, "
|
||||
"which means this could introduce a noticeable error."
|
||||
)
|
||||
f = (fx + fy) / 2
|
||||
# Normalize f into normalized device coordinates.
|
||||
focal_length_px = f / image_w
|
||||
# Transfer into focal_length and sensor_width.
|
||||
focal_length = torch.tensor([znear - 1e-5], dtype=torch.float32, device=R.device)
|
||||
focal_length = focal_length[None, :].repeat(batch_size, 1)
|
||||
sensor_width = focal_length / focal_length_px
|
||||
# Principal point.
|
||||
cx = camera_matrix[:, 0, 2].unsqueeze(1)
|
||||
cy = camera_matrix[:, 1, 2].unsqueeze(1)
|
||||
# Transfer principal point offset into centered offset.
|
||||
cx = -(cx - image_w / 2)
|
||||
cy = cy - image_h / 2
|
||||
# Concatenate to final vector.
|
||||
param = torch.cat([focal_length, sensor_width, cx, cy], dim=1)
|
||||
R_trans = R.permute(0, 2, 1)
|
||||
cam_pos = -torch.bmm(R_trans, tvec).squeeze(2)
|
||||
cam_rot = matrix_to_rotation_6d(R_trans)
|
||||
cam_params = torch.cat([cam_pos, cam_rot, param], dim=1)
|
||||
return cam_params
|
||||
|
||||
|
||||
def _pulsar_from_cameras_projection(
|
||||
cameras: PerspectiveCameras,
|
||||
image_size: torch.Tensor,
|
||||
) -> torch.Tensor:
|
||||
opencv_R, opencv_T, opencv_K = _opencv_from_cameras_projection(cameras, image_size)
|
||||
return _pulsar_from_opencv_projection(opencv_R, opencv_T, opencv_K, image_size)
|
@ -11,7 +11,7 @@ from typing import Any, Dict, Optional, Tuple, Union
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from ....utils import pulsar_from_cameras_projection
|
||||
from ...camera_conversions import _pulsar_from_cameras_projection
|
||||
from ...cameras import (
|
||||
FoVOrthographicCameras,
|
||||
FoVPerspectiveCameras,
|
||||
@ -378,7 +378,7 @@ class PulsarPointsRenderer(nn.Module):
|
||||
size_tensor = torch.tensor(
|
||||
[[self.renderer._renderer.height, self.renderer._renderer.width]]
|
||||
)
|
||||
pulsar_cam = pulsar_from_cameras_projection(tmp_cams, size_tensor)
|
||||
pulsar_cam = _pulsar_from_cameras_projection(tmp_cams, size_tensor)
|
||||
cam_pos = pulsar_cam[0, :3]
|
||||
cam_rot = pulsar_cam[0, 3:9]
|
||||
return cam_pos, cam_rot
|
||||
|
@ -7,8 +7,8 @@
|
||||
from .camera_conversions import (
|
||||
cameras_from_opencv_projection,
|
||||
opencv_from_cameras_projection,
|
||||
pulsar_from_opencv_projection,
|
||||
pulsar_from_cameras_projection,
|
||||
pulsar_from_opencv_projection,
|
||||
)
|
||||
from .ico_sphere import ico_sphere
|
||||
from .torus import torus
|
||||
|
@ -4,16 +4,17 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
import logging
|
||||
from typing import Tuple
|
||||
|
||||
import torch
|
||||
|
||||
from ..renderer import PerspectiveCameras
|
||||
from ..transforms import matrix_to_rotation_6d
|
||||
|
||||
|
||||
LOGGER = logging.getLogger(__name__)
|
||||
from ..renderer.camera_conversions import (
|
||||
_cameras_from_opencv_projection,
|
||||
_opencv_from_cameras_projection,
|
||||
_pulsar_from_cameras_projection,
|
||||
_pulsar_from_opencv_projection,
|
||||
)
|
||||
|
||||
|
||||
def cameras_from_opencv_projection(
|
||||
@ -58,30 +59,7 @@ def cameras_from_opencv_projection(
|
||||
Returns:
|
||||
cameras_pytorch3d: A batch of `N` cameras in the PyTorch3D convention.
|
||||
"""
|
||||
focal_length = torch.stack([camera_matrix[:, 0, 0], camera_matrix[:, 1, 1]], dim=-1)
|
||||
principal_point = camera_matrix[:, :2, 2]
|
||||
|
||||
# Retype the image_size correctly and flip to width, height.
|
||||
image_size_wh = image_size.to(R).flip(dims=(1,))
|
||||
|
||||
# Get the PyTorch3D focal length and principal point.
|
||||
focal_pytorch3d = focal_length / (0.5 * image_size_wh)
|
||||
p0_pytorch3d = -(principal_point / (0.5 * image_size_wh) - 1)
|
||||
|
||||
# For R, T we flip x, y axes (opencv screen space has an opposite
|
||||
# orientation of screen axes).
|
||||
# We also transpose R (opencv multiplies points from the opposite=left side).
|
||||
R_pytorch3d = R.clone().permute(0, 2, 1)
|
||||
T_pytorch3d = tvec.clone()
|
||||
R_pytorch3d[:, :, :2] *= -1
|
||||
T_pytorch3d[:, :2] *= -1
|
||||
|
||||
return PerspectiveCameras(
|
||||
R=R_pytorch3d,
|
||||
T=T_pytorch3d,
|
||||
focal_length=focal_pytorch3d,
|
||||
principal_point=p0_pytorch3d,
|
||||
)
|
||||
return _cameras_from_opencv_projection(R, tvec, camera_matrix, image_size)
|
||||
|
||||
|
||||
def opencv_from_cameras_projection(
|
||||
@ -114,27 +92,7 @@ def opencv_from_cameras_projection(
|
||||
tvec: A batch of translation vectors of shape `(N, 3)`.
|
||||
camera_matrix: A batch of camera calibration matrices of shape `(N, 3, 3)`.
|
||||
"""
|
||||
R_pytorch3d = cameras.R.clone() # pyre-ignore
|
||||
T_pytorch3d = cameras.T.clone() # pyre-ignore
|
||||
focal_pytorch3d = cameras.focal_length
|
||||
p0_pytorch3d = cameras.principal_point
|
||||
T_pytorch3d[:, :2] *= -1
|
||||
R_pytorch3d[:, :, :2] *= -1
|
||||
tvec = T_pytorch3d
|
||||
R = R_pytorch3d.permute(0, 2, 1)
|
||||
|
||||
# Retype the image_size correctly and flip to width, height.
|
||||
image_size_wh = image_size.to(R).flip(dims=(1,))
|
||||
|
||||
principal_point = (-p0_pytorch3d + 1.0) * (0.5 * image_size_wh) # pyre-ignore
|
||||
focal_length = focal_pytorch3d * (0.5 * image_size_wh)
|
||||
|
||||
camera_matrix = torch.zeros_like(R)
|
||||
camera_matrix[:, :2, 2] = principal_point
|
||||
camera_matrix[:, 2, 2] = 1.0
|
||||
camera_matrix[:, 0, 0] = focal_length[:, 0]
|
||||
camera_matrix[:, 1, 1] = focal_length[:, 1]
|
||||
return R, tvec, camera_matrix
|
||||
return _opencv_from_cameras_projection(cameras, image_size)
|
||||
|
||||
|
||||
def pulsar_from_opencv_projection(
|
||||
@ -170,90 +128,7 @@ def pulsar_from_opencv_projection(
|
||||
convention `(N, 13)` (3 translation, 6 rotation, focal_length, sensor_width,
|
||||
c_x, c_y).
|
||||
"""
|
||||
assert len(camera_matrix.size()) == 3, "This function requires batched inputs!"
|
||||
assert len(R.size()) == 3, "This function requires batched inputs!"
|
||||
assert len(tvec.size()) in (2, 3), "This function reuqires batched inputs!"
|
||||
|
||||
# Validate parameters.
|
||||
image_size_wh = image_size.to(R).flip(dims=(1,))
|
||||
assert torch.all(
|
||||
image_size_wh > 0
|
||||
), "height and width must be positive but min is: %s" % (
|
||||
str(image_size_wh.min().item())
|
||||
)
|
||||
assert (
|
||||
camera_matrix.size(1) == 3 and camera_matrix.size(2) == 3
|
||||
), "Incorrect camera matrix shape: expected 3x3 but got %dx%d" % (
|
||||
camera_matrix.size(1),
|
||||
camera_matrix.size(2),
|
||||
)
|
||||
assert (
|
||||
R.size(1) == 3 and R.size(2) == 3
|
||||
), "Incorrect R shape: expected 3x3 but got %dx%d" % (
|
||||
R.size(1),
|
||||
R.size(2),
|
||||
)
|
||||
if len(tvec.size()) == 2:
|
||||
tvec = tvec.unsqueeze(2)
|
||||
assert (
|
||||
tvec.size(1) == 3 and tvec.size(2) == 1
|
||||
), "Incorrect tvec shape: expected 3x1 but got %dx%d" % (
|
||||
tvec.size(1),
|
||||
tvec.size(2),
|
||||
)
|
||||
# Check batch size.
|
||||
batch_size = camera_matrix.size(0)
|
||||
assert R.size(0) == batch_size, "Expected R to have batch size %d. Has size %d." % (
|
||||
batch_size,
|
||||
R.size(0),
|
||||
)
|
||||
assert (
|
||||
tvec.size(0) == batch_size
|
||||
), "Expected tvec to have batch size %d. Has size %d." % (
|
||||
batch_size,
|
||||
tvec.size(0),
|
||||
)
|
||||
# Check image sizes.
|
||||
image_w = image_size_wh[0, 0]
|
||||
image_h = image_size_wh[0, 1]
|
||||
assert torch.all(
|
||||
image_size_wh[:, 0] == image_w
|
||||
), "All images in a batch must have the same width!"
|
||||
assert torch.all(
|
||||
image_size_wh[:, 1] == image_h
|
||||
), "All images in a batch must have the same height!"
|
||||
# Focal length.
|
||||
fx = camera_matrix[:, 0, 0].unsqueeze(1)
|
||||
fy = camera_matrix[:, 1, 1].unsqueeze(1)
|
||||
# Check that we introduce less than 1% error by averaging the focal lengths.
|
||||
fx_y = fx / fy
|
||||
if torch.any(fx_y > 1.01) or torch.any(fx_y < 0.99):
|
||||
LOGGER.warning(
|
||||
"Pulsar only supports a single focal lengths. For converting OpenCV "
|
||||
"focal lengths, we average them for x and y directions. "
|
||||
"The focal lengths for x and y you provided differ by more than 1%, "
|
||||
"which means this could introduce a noticeable error."
|
||||
)
|
||||
f = (fx + fy) / 2
|
||||
# Normalize f into normalized device coordinates.
|
||||
focal_length_px = f / image_w
|
||||
# Transfer into focal_length and sensor_width.
|
||||
focal_length = torch.tensor([znear - 1e-5], dtype=torch.float32, device=R.device)
|
||||
focal_length = focal_length[None, :].repeat(batch_size, 1)
|
||||
sensor_width = focal_length / focal_length_px
|
||||
# Principal point.
|
||||
cx = camera_matrix[:, 0, 2].unsqueeze(1)
|
||||
cy = camera_matrix[:, 1, 2].unsqueeze(1)
|
||||
# Transfer principal point offset into centered offset.
|
||||
cx = -(cx - image_w / 2)
|
||||
cy = cy - image_h / 2
|
||||
# Concatenate to final vector.
|
||||
param = torch.cat([focal_length, sensor_width, cx, cy], dim=1)
|
||||
R_trans = R.permute(0, 2, 1)
|
||||
cam_pos = -torch.bmm(R_trans, tvec).squeeze(2)
|
||||
cam_rot = matrix_to_rotation_6d(R_trans)
|
||||
cam_params = torch.cat([cam_pos, cam_rot, param], dim=1)
|
||||
return cam_params
|
||||
return _pulsar_from_opencv_projection(R, tvec, camera_matrix, image_size, znear)
|
||||
|
||||
|
||||
def pulsar_from_cameras_projection(
|
||||
@ -281,5 +156,4 @@ def pulsar_from_cameras_projection(
|
||||
convention `(N, 13)` (3 translation, 6 rotation, focal_length, sensor_width,
|
||||
c_x, c_y).
|
||||
"""
|
||||
opencv_R, opencv_T, opencv_K = opencv_from_cameras_projection(cameras, image_size)
|
||||
return pulsar_from_opencv_projection(opencv_R, opencv_T, opencv_K, image_size)
|
||||
return _pulsar_from_cameras_projection(cameras, image_size)
|
||||
|
Loading…
x
Reference in New Issue
Block a user