amalgamate meshes with texture into a single scene

Summary:
Add a join_scene method to all the textures to allow the join_mesh function to include textures. Rename the join_mesh function to join_meshes_as_scene.

For TexturesAtlas, we now interpolate if the user attempts to have the resolution vary across the batch. This doesn't look great if the resolution is already very low.

For TexturesUV, a rectangle packing function is required, this does something simple.

Reviewed By: gkioxari

Differential Revision: D23188773

fbshipit-source-id: c013db061a04076e13e90ccc168a7913e933a9c5
This commit is contained in:
Jeremy Reizenstein 2020-08-25 11:26:58 -07:00 committed by Facebook GitHub Bot
parent e25ccab3d9
commit 909dc83505
14 changed files with 741 additions and 23 deletions

View File

@ -2,7 +2,7 @@
import itertools
import warnings
from typing import Dict, List, Optional, Tuple, Union
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
@ -10,6 +10,8 @@ from pytorch3d.ops import interpolate_face_attributes
from pytorch3d.structures.utils import list_to_packed, list_to_padded, padded_to_list
from torch.nn.functional import interpolate
from .utils import pack_rectangles
# This file contains classes and helper functions for texturing.
# There are three types of textures: TexturesVertex, TexturesAtlas
@ -329,6 +331,7 @@ class TexturesAtlas(TexturesBase):
[1] Liu et al, 'Soft Rasterizer: A Differentiable Renderer for Image-based
3D Reasoning', ICCV 2019
See also https://github.com/ShichenLiu/SoftRas/issues/21
"""
if isinstance(atlas, (list, tuple)):
correct_format = all(
@ -336,11 +339,15 @@ class TexturesAtlas(TexturesBase):
torch.is_tensor(elem)
and elem.ndim == 4
and elem.shape[1] == elem.shape[2]
and elem.shape[1] == atlas[0].shape[1]
)
for elem in atlas
)
if not correct_format:
msg = "Expected atlas to be a list of tensors of shape (F, R, R, D)"
msg = (
"Expected atlas to be a list of tensors of shape (F, R, R, D) "
"with the same value of R."
)
raise ValueError(msg)
self._atlas_list = atlas
self._atlas_padded = None
@ -529,6 +536,12 @@ class TexturesAtlas(TexturesBase):
new_tex._num_faces_per_mesh = num_faces_per_mesh
return new_tex
def join_scene(self) -> "TexturesAtlas":
"""
Return a new TexturesAtlas amalgamating the batch.
"""
return self.__class__(atlas=[torch.cat(self.atlas_list())])
class TexturesUV(TexturesBase):
def __init__(
@ -560,7 +573,7 @@ class TexturesUV(TexturesBase):
the two align_corners options at
https://discuss.pytorch.org/t/22663/9 .
An example of how the indexing into the maps, with align_corners=True
An example of how the indexing into the maps, with align_corners=True,
works is as follows.
If maps[i] has shape [101, 1001] and the value of verts_uvs[i][j]
is [0.4, 0.3], then a value of j in faces_uvs[i] means a vertex
@ -574,10 +587,11 @@ class TexturesUV(TexturesBase):
If maps[i] has shape [100, 1000] and the value of verts_uvs[i][j]
is [0.405, 0.2995], then a value of j in faces_uvs[i] means a vertex
whose color is given by maps[i][700, 40].
In this case, padding_mode even matters for values in verts_uvs
slightly above 0 or slightly below 1. In this case, it matters if the
first value is outside the interval [0.0005, 0.9995] or if the second
is outside the interval [0.005, 0.995].
When align_corners=False, padding_mode even matters for values in
verts_uvs slightly above 0 or slightly below 1. In this case, the
padding_mode matters if the first value is outside the interval
[0.0005, 0.9995] or if the second is outside the interval
[0.005, 0.995].
"""
super().__init__()
self.padding_mode = padding_mode
@ -805,12 +819,9 @@ class TexturesUV(TexturesBase):
def maps_padded(self) -> torch.Tensor:
return self._maps_padded
def maps_list(self) -> torch.Tensor:
# maps_list is not used anywhere currently - maps
# are padded to ensure the (H, W) of all maps is the
# same across the batch and we don't store the
# unpadded sizes of the maps. Therefore just return
# the unbinded padded tensor.
def maps_list(self) -> List[torch.Tensor]:
if self._maps_list is not None:
return self._maps_list
return self._maps_padded.unbind(0)
def extend(self, N: int) -> "TexturesUV":
@ -965,6 +976,143 @@ class TexturesUV(TexturesBase):
new_tex._num_faces_per_mesh = num_faces_per_mesh
return new_tex
def _place_map_into_single_map(
self,
single_map: torch.Tensor,
map_: torch.Tensor,
location: Tuple[int, int, bool], # (x,y) and whether flipped
) -> None:
"""
Copy map into a larger tensor single_map at the destination specified by location.
If align_corners is False, we add the needed border around the destination.
Used by join_scene.
Args:
single_map: (total_H, total_W, 3)
map_: (H, W, 3) source data
location: where to place map
"""
do_flip = location[2]
source = map_.transpose(0, 1) if do_flip else map_
border_width = 0 if self.align_corners else 1
lower_u = location[0] + border_width
lower_v = location[1] + border_width
upper_u = lower_u + source.shape[0]
upper_v = lower_v + source.shape[1]
single_map[lower_u:upper_u, lower_v:upper_v] = source
if self.padding_mode != "zeros" and not self.align_corners:
single_map[lower_u - 1, lower_v:upper_v] = single_map[
lower_u, lower_v:upper_v
]
single_map[upper_u, lower_v:upper_v] = single_map[
upper_u - 1, lower_v:upper_v
]
single_map[lower_u:upper_u, lower_v - 1] = single_map[
lower_u:upper_u, lower_v
]
single_map[lower_u:upper_u, upper_v] = single_map[
lower_u:upper_u, upper_v - 1
]
single_map[lower_u - 1, lower_v - 1] = single_map[lower_u, lower_v]
single_map[lower_u - 1, upper_v] = single_map[lower_u, upper_v - 1]
single_map[upper_u, lower_v - 1] = single_map[upper_u - 1, lower_v]
single_map[upper_u, upper_v] = single_map[upper_u - 1, upper_v - 1]
def join_scene(self) -> "TexturesUV":
"""
Return a new TexturesUV amalgamating the batch.
We calculate a large single map which contains the original maps,
and find verts_uvs to point into it. This will not replicate
behavior of padding for verts_uvs values outside [0,1].
If align_corners=False, we need to add an artificial border around
every map.
We use the function `pack_rectangles` to provide a layout for the
single map. _place_map_into_single_map is used to copy the maps
into the single map. The merging of verts_uvs and faces_uvs are
handled locally in this function.
"""
maps = self.maps_list()
heights_and_widths = []
extra_border = 0 if self.align_corners else 2
for map_ in maps:
heights_and_widths.append(
(map_.shape[0] + extra_border, map_.shape[1] + extra_border)
)
merging_plan = pack_rectangles(heights_and_widths)
# pyre-fixme[16]: `Tensor` has no attribute `new_zeros`.
single_map = maps[0].new_zeros((*merging_plan.total_size, 3))
verts_uvs = self.verts_uvs_list()
verts_uvs_merged = []
for map_, loc, uvs in zip(maps, merging_plan.locations, verts_uvs):
new_uvs = uvs.clone()
self._place_map_into_single_map(single_map, map_, loc)
do_flip = loc[2]
x_shape = map_.shape[1] if do_flip else map_.shape[0]
y_shape = map_.shape[0] if do_flip else map_.shape[1]
if do_flip:
# Here we have flipped / transposed the map.
# In uvs, the y values are decreasing from 1 to 0 and the x
# values increase from 0 to 1. We subtract all values from 1
# as the x's become y's and the y's become x's.
new_uvs = 1.0 - new_uvs[:, [1, 0]]
if TYPE_CHECKING:
new_uvs = torch.Tensor(new_uvs)
# If align_corners is True, then an index of x (where x is in
# the range 0 .. map_.shape[]-1) in one of the input maps
# was hit by a u of x/(map_.shape[]-1).
# That x is located at the index loc[] + x in the single_map, and
# to hit that we need u to equal (loc[] + x) / (total_size[]-1)
# so the old u should be mapped to
# { u*(map_.shape[]-1) + loc[] } / (total_size[]-1)
# If align_corners is False, then an index of x (where x is in
# the range 1 .. map_.shape[]-2) in one of the input maps
# was hit by a u of (x+0.5)/(map_.shape[]).
# That x is located at the index loc[] + 1 + x in the single_map,
# (where the 1 is for the border)
# and to hit that we need u to equal (loc[] + 1 + x + 0.5) / (total_size[])
# so the old u should be mapped to
# { loc[] + 1 + u*map_.shape[]-0.5 + 0.5 } / (total_size[])
# = { loc[] + 1 + u*map_.shape[] } / (total_size[])
# We change the y's in new_uvs for the scaling of height,
# and the x's for the scaling of width.
# That is why the 1's and 0's are mismatched in these lines.
one_if_align = 1 if self.align_corners else 0
one_if_not_align = 1 - one_if_align
denom_x = merging_plan.total_size[0] - one_if_align
scale_x = x_shape - one_if_align
denom_y = merging_plan.total_size[1] - one_if_align
scale_y = y_shape - one_if_align
new_uvs[:, 1] *= scale_x / denom_x
new_uvs[:, 1] += (loc[0] + one_if_not_align) / denom_x
new_uvs[:, 0] *= scale_y / denom_y
new_uvs[:, 0] += (loc[1] + one_if_not_align) / denom_y
verts_uvs_merged.append(new_uvs)
faces_uvs_merged = []
offset = 0
for faces_uvs_, verts_uvs_ in zip(self.faces_uvs_list(), verts_uvs):
faces_uvs_merged.append(offset + faces_uvs_)
offset += verts_uvs_.shape[0]
return self.__class__(
maps=[single_map],
verts_uvs=[torch.cat(verts_uvs_merged)],
faces_uvs=[torch.cat(faces_uvs_merged)],
align_corners=self.align_corners,
padding_mode=self.padding_mode,
)
class TexturesVertex(TexturesBase):
def __init__(
@ -1156,3 +1304,9 @@ class TexturesVertex(TexturesBase):
new_tex = self.__class__(verts_features=verts_features_list)
new_tex._num_verts_per_mesh = num_faces_per_mesh
return new_tex
def join_scene(self) -> "TexturesVertex":
"""
Return a new TexturesVertex amalgamating the batch.
"""
return self.__class__(verts_features=[torch.cat(self.verts_features_list())])

View File

@ -1,6 +1,8 @@
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
from typing import List, NamedTuple, Tuple
import torch
from pytorch3d.ops import interpolate_face_attributes
@ -58,3 +60,184 @@ def _interpolate_zbuf(
] # (1, H, W, K)
zbuf[pix_to_face == -1] = -1
return zbuf
# ----------- Rectangle Packing -------------------- #
# Note the order of members matters here because it determines the queue order.
# We want to place longer rectangles first.
class _UnplacedRectangle(NamedTuple):
size: Tuple[int, int]
ind: int
flipped: bool
def _try_place_rectangle(
rect: _UnplacedRectangle,
placed_so_far: List[Tuple[int, int, bool]],
occupied: List[Tuple[int, int]],
) -> bool:
"""
Try to place rect within the current bounding box.
Part of the implementation of pack_rectangles.
Note that the arguments `placed_so_far` and `occupied` are modified.
Args:
rect: rectangle to place
placed_so_far: the locations decided upon so far - a list of
(x, y, whether flipped). The nth element is the
location of the nth rectangle if it has been decided.
(modified in place)
occupied: the nodes of the graph of extents of rightmost placed
rectangles - (modified in place)
Returns:
True on success.
Example:
(We always have placed the first rectangle horizontally and other
rectangles above it.)
Let's say the placed boxes 1-4 are layed out like this.
The coordinates of the points marked X are stored in occupied.
It is to the right of the X's that we seek to place rect.
+-----------------------X
|2 |
| +---X
| |4 |
| | |
| +---+X
| |3 |
| | |
+-----------------------+----+------X
y |1 |
^ | --->x |
| +-----------------------------------+
We want to place this rectangle.
+-+
|5|
| |
| | = rect
| |
| |
| |
+-+
The call will succeed, returning True, leaving us with
+-----------------------X
|2 | +-X
| +---+|5|
| |4 || |
| | || |
| +---++ |
| |3 | |
| | | |
+-----------------------+----+-+----X
|1 |
| |
+-----------------------------------+ .
"""
total_width = occupied[0][0]
needed_height = rect.size[1]
current_start_idx = None
current_max_width = 0
previous_height = 0
currently_packed = 0
for idx, interval in enumerate(occupied):
if interval[0] <= total_width - rect.size[0]:
currently_packed += interval[1] - previous_height
current_max_width = max(interval[0], current_max_width)
if current_start_idx is None:
current_start_idx = idx
if currently_packed >= needed_height:
current_max_width = max(interval[0], current_max_width)
placed_so_far[rect.ind] = (
current_max_width,
occupied[current_start_idx - 1][1],
rect.flipped,
)
new_occupied = (
current_max_width + rect.size[0],
occupied[current_start_idx - 1][1] + needed_height,
)
if currently_packed == needed_height:
occupied[idx] = new_occupied
del occupied[current_start_idx:idx]
elif idx > current_start_idx:
occupied[idx - 1] = new_occupied
del occupied[current_start_idx : (idx - 1)]
else:
occupied.insert(idx, new_occupied)
return True
else:
current_start_idx = None
current_max_width = 0
currently_packed = 0
previous_height = interval[1]
return False
class PackedRectangles(NamedTuple):
total_size: Tuple[int, int]
locations: List[Tuple[int, int, bool]] # (x,y) and whether flipped
def pack_rectangles(sizes: List[Tuple[int, int]]) -> PackedRectangles:
"""
Naive rectangle packing in to a large rectangle. Flipping (i.e. rotating
a rectangle by 90 degrees) is allowed.
This is used to join several uv maps into a single scene, see
TexturesUV.join_scene.
Args:
sizes: List of sizes of rectangles to pack
Returns:
total_size: size of total large rectangle
rectangles: location for each of the input rectangles
"""
if len(sizes) < 2:
raise ValueError("Cannot pack less than two boxes")
queue = []
for i, size in enumerate(sizes):
if size[0] < size[1]:
queue.append(_UnplacedRectangle((size[1], size[0]), i, True))
else:
queue.append(_UnplacedRectangle((size[0], size[1]), i, False))
queue.sort()
placed_so_far = [(-1, -1, False)] * len(sizes)
biggest = queue.pop()
total_width, current_height = biggest.size
placed_so_far[biggest.ind] = (0, 0, biggest.flipped)
second = queue.pop()
placed_so_far[second.ind] = (0, current_height, second.flipped)
current_height += second.size[1]
occupied = [biggest.size, (second.size[0], current_height)]
for rect in reversed(queue):
if _try_place_rectangle(rect, placed_so_far, occupied):
continue
rotated = _UnplacedRectangle(
(rect.size[1], rect.size[0]), rect.ind, not rect.flipped
)
if _try_place_rectangle(rotated, placed_so_far, occupied):
continue
# rect wasn't placed in the current bounding box,
# so we add extra space to fit it in.
placed_so_far[rect.ind] = (0, current_height, rect.flipped)
current_height += rect.size[1]
occupied.append((rect.size[0], current_height))
return PackedRectangles((total_width, current_height), placed_so_far)

View File

@ -1,6 +1,6 @@
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
from .meshes import Meshes, join_meshes_as_batch
from .meshes import Meshes, join_meshes_as_batch, join_meshes_as_scene
from .pointclouds import Pointclouds
from .utils import list_to_packed, list_to_padded, packed_to_list, padded_to_list

View File

@ -1254,7 +1254,7 @@ class Meshes(object):
"""
verts_packed = self.verts_packed()
if vert_offsets_packed.shape != verts_packed.shape:
raise ValueError("Verts offsets must have dimension (all_v, 2).")
raise ValueError("Verts offsets must have dimension (all_v, 3).")
# update verts packed
self._verts_packed = verts_packed + vert_offsets_packed
new_verts_list = list(
@ -1548,26 +1548,43 @@ def join_meshes_as_batch(meshes: List[Meshes], include_textures: bool = True):
return Meshes(verts=verts, faces=faces, textures=tex)
def join_mesh(meshes: Union[Meshes, List[Meshes]]) -> Meshes:
def join_meshes_as_scene(
meshes: Union[Meshes, List[Meshes]], include_textures: bool = True
) -> Meshes:
"""
Joins a batch of meshes in the form of a Meshes object or a list of Meshes
objects as a single mesh. If the input is a list, the Meshes objects in the list
must all be on the same device. This version ignores all textures in the input meshes.
objects as a single mesh. If the input is a list, the Meshes objects in the
list must all be on the same device. Unless include_textures is False, the
meshes must all have the same type of texture or must all not have textures.
If textures are included, then the textures are joined as a single scene in
addition to the meshes. For this, texture types have an appropriate method
called join_scene which joins mesh textures into a single texture.
If the textures are TexturesAtlas then they must have the same resolution.
If they are TexturesUV then they must have the same align_corners and
padding_mode. Values in verts_uvs outside [0, 1] will not
be respected.
Args:
meshes: Meshes object that contains a batch of meshes or a list of Meshes objects
meshes: Meshes object that contains a batch of meshes, or a list of
Meshes objects.
include_textures: (bool) whether to try to join the textures.
Returns:
new Meshes object containing a single mesh
"""
if isinstance(meshes, List):
meshes = join_meshes_as_batch(meshes, include_textures=False)
meshes = join_meshes_as_batch(meshes, include_textures=include_textures)
if len(meshes) == 1:
return meshes
verts = meshes.verts_packed() # (sum(V_n), 3)
# Offset automatically done by faces_packed
faces = meshes.faces_packed() # (sum(F_n), 3)
textures = None
mesh = Meshes(verts=verts.unsqueeze(0), faces=faces.unsqueeze(0))
if include_textures and meshes.textures is not None:
textures = meshes.textures.join_scene()
mesh = Meshes(verts=verts.unsqueeze(0), faces=faces.unsqueeze(0), textures=textures)
return mesh

Binary file not shown.

After

Width:  |  Height:  |  Size: 25 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 12 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 807 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 12 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 819 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 806 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 KiB

View File

@ -33,7 +33,11 @@ from pytorch3d.renderer.mesh.shader import (
SoftSilhouetteShader,
TexturedSoftPhongShader,
)
from pytorch3d.structures.meshes import Meshes, join_mesh, join_meshes_as_batch
from pytorch3d.structures.meshes import (
Meshes,
join_meshes_as_batch,
join_meshes_as_scene,
)
from pytorch3d.utils.ico_sphere import ico_sphere
from pytorch3d.utils.torus import torus
@ -571,6 +575,288 @@ class TestRenderMeshes(TestCaseMixin, unittest.TestCase):
self.assertClose(outputs[0][0, ..., :3], outputs[1][0, ..., :3], atol=1e-5)
self.assertClose(outputs[0][1, ..., :3], outputs[2][0, ..., :3], atol=1e-5)
def test_join_uvs(self):
"""Meshes with TexturesUV joined into a scene"""
# Test the result of rendering three tori with separate textures.
# The expected result is consistent with rendering them each alone.
# This tests TexturesUV.join_scene with rectangle flipping,
# and we check the form of the merged map as well.
torch.manual_seed(1)
device = torch.device("cuda:0")
R, T = look_at_view_transform(18, 0, 0)
cameras = FoVPerspectiveCameras(device=device, R=R, T=T)
raster_settings = RasterizationSettings(
image_size=256, blur_radius=0.0, faces_per_pixel=1
)
lights = PointLights(
device=device,
ambient_color=((1.0, 1.0, 1.0),),
diffuse_color=((0.0, 0.0, 0.0),),
specular_color=((0.0, 0.0, 0.0),),
)
blend_params = BlendParams(
sigma=1e-1,
gamma=1e-4,
background_color=torch.tensor([1.0, 1.0, 1.0], device=device),
)
renderer = MeshRenderer(
rasterizer=MeshRasterizer(cameras=cameras, raster_settings=raster_settings),
shader=HardPhongShader(
device=device, blend_params=blend_params, cameras=cameras, lights=lights
),
)
plain_torus = torus(r=1, R=4, sides=5, rings=6, device=device)
[verts] = plain_torus.verts_list()
verts_shifted1 = verts.clone()
verts_shifted1 *= 0.5
verts_shifted1[:, 1] += 7
verts_shifted2 = verts.clone()
verts_shifted2 *= 0.5
verts_shifted2[:, 1] -= 7
[faces] = plain_torus.faces_list()
nocolor = torch.zeros((100, 100), device=device)
color_gradient = torch.linspace(0, 1, steps=100, device=device)
color_gradient1 = color_gradient[None].expand_as(nocolor)
color_gradient2 = color_gradient[:, None].expand_as(nocolor)
colors1 = torch.stack([nocolor, color_gradient1, color_gradient2], dim=2)
colors2 = torch.stack([color_gradient1, color_gradient2, nocolor], dim=2)
verts_uvs1 = torch.rand(size=(verts.shape[0], 2), device=device)
verts_uvs2 = torch.rand(size=(verts.shape[0], 2), device=device)
for i, align_corners, padding_mode in [
(0, True, "border"),
(1, False, "border"),
(2, False, "zeros"),
]:
textures1 = TexturesUV(
maps=[colors1],
faces_uvs=[faces],
verts_uvs=[verts_uvs1],
align_corners=align_corners,
padding_mode=padding_mode,
)
# These downsamplings of colors2 are chosen to ensure a flip and a non flip
# when the maps are merged.
# We have maps of size (100, 100), (50, 99) and (99, 50).
textures2 = TexturesUV(
maps=[colors2[::2, :-1]],
faces_uvs=[faces],
verts_uvs=[verts_uvs2],
align_corners=align_corners,
padding_mode=padding_mode,
)
offset = torch.tensor([0, 0, 0.5], device=device)
textures3 = TexturesUV(
maps=[colors2[:-1, ::2] + offset],
faces_uvs=[faces],
verts_uvs=[verts_uvs2],
align_corners=align_corners,
padding_mode=padding_mode,
)
mesh1 = Meshes(verts=[verts], faces=[faces], textures=textures1)
mesh2 = Meshes(verts=[verts_shifted1], faces=[faces], textures=textures2)
mesh3 = Meshes(verts=[verts_shifted2], faces=[faces], textures=textures3)
mesh = join_meshes_as_scene([mesh1, mesh2, mesh3])
output = renderer(mesh)[0, ..., :3].cpu()
output1 = renderer(mesh1)[0, ..., :3].cpu()
output2 = renderer(mesh2)[0, ..., :3].cpu()
output3 = renderer(mesh3)[0, ..., :3].cpu()
# The background color is white and the objects do not overlap, so we can
# predict the merged image by taking the minimum over every channel
merged = torch.min(torch.min(output1, output2), output3)
image_ref = load_rgb_image(f"test_joinuvs{i}_final.png", DATA_DIR)
map_ref = load_rgb_image(f"test_joinuvs{i}_map.png", DATA_DIR)
if DEBUG:
Image.fromarray((output.numpy() * 255).astype(np.uint8)).save(
DATA_DIR / f"test_joinuvs{i}_final_.png"
)
Image.fromarray((output.numpy() * 255).astype(np.uint8)).save(
DATA_DIR / f"test_joinuvs{i}_merged.png"
)
Image.fromarray((output1.numpy() * 255).astype(np.uint8)).save(
DATA_DIR / f"test_joinuvs{i}_1.png"
)
Image.fromarray((output2.numpy() * 255).astype(np.uint8)).save(
DATA_DIR / f"test_joinuvs{i}_2.png"
)
Image.fromarray((output3.numpy() * 255).astype(np.uint8)).save(
DATA_DIR / f"test_joinuvs{i}_3.png"
)
Image.fromarray(
(mesh.textures.maps_padded()[0].cpu().numpy() * 255).astype(
np.uint8
)
).save(DATA_DIR / f"test_joinuvs{i}_map_.png")
Image.fromarray(
(mesh2.textures.maps_padded()[0].cpu().numpy() * 255).astype(
np.uint8
)
).save(DATA_DIR / f"test_joinuvs{i}_map2.png")
Image.fromarray(
(mesh3.textures.maps_padded()[0].cpu().numpy() * 255).astype(
np.uint8
)
).save(DATA_DIR / f"test_joinuvs{i}_map3.png")
self.assertClose(output, merged, atol=0.015)
self.assertClose(output, image_ref, atol=0.05)
self.assertClose(mesh.textures.maps_padded()[0].cpu(), map_ref, atol=0.05)
def test_join_verts(self):
"""Meshes with TexturesVertex joined into a scene"""
# Test the result of rendering two tori with separate textures.
# The expected result is consistent with rendering them each alone.
torch.manual_seed(1)
device = torch.device("cuda:0")
plain_torus = torus(r=1, R=4, sides=5, rings=6, device=device)
[verts] = plain_torus.verts_list()
verts_shifted1 = verts.clone()
verts_shifted1 *= 0.5
verts_shifted1[:, 1] += 7
faces = plain_torus.faces_list()
textures1 = TexturesVertex(verts_features=[torch.rand_like(verts)])
textures2 = TexturesVertex(verts_features=[torch.rand_like(verts)])
mesh1 = Meshes(verts=[verts], faces=faces, textures=textures1)
mesh2 = Meshes(verts=[verts_shifted1], faces=faces, textures=textures2)
mesh = join_meshes_as_scene([mesh1, mesh2])
R, T = look_at_view_transform(18, 0, 0)
cameras = FoVPerspectiveCameras(device=device, R=R, T=T)
raster_settings = RasterizationSettings(
image_size=256, blur_radius=0.0, faces_per_pixel=1
)
lights = PointLights(
device=device,
ambient_color=((1.0, 1.0, 1.0),),
diffuse_color=((0.0, 0.0, 0.0),),
specular_color=((0.0, 0.0, 0.0),),
)
blend_params = BlendParams(
sigma=1e-1,
gamma=1e-4,
background_color=torch.tensor([1.0, 1.0, 1.0], device=device),
)
renderer = MeshRenderer(
rasterizer=MeshRasterizer(cameras=cameras, raster_settings=raster_settings),
shader=HardPhongShader(
device=device, blend_params=blend_params, cameras=cameras, lights=lights
),
)
output = renderer(mesh)
image_ref = load_rgb_image("test_joinverts_final.png", DATA_DIR)
if DEBUG:
debugging_outputs = []
for mesh_ in [mesh1, mesh2]:
debugging_outputs.append(renderer(mesh_))
Image.fromarray(
(output[0, ..., :3].cpu().numpy() * 255).astype(np.uint8)
).save(DATA_DIR / "test_joinverts_final_.png")
Image.fromarray(
(debugging_outputs[0][0, ..., :3].cpu().numpy() * 255).astype(np.uint8)
).save(DATA_DIR / "test_joinverts_1.png")
Image.fromarray(
(debugging_outputs[1][0, ..., :3].cpu().numpy() * 255).astype(np.uint8)
).save(DATA_DIR / "test_joinverts_2.png")
result = output[0, ..., :3].cpu()
self.assertClose(result, image_ref, atol=0.05)
def test_join_atlas(self):
"""Meshes with TexturesAtlas joined into a scene"""
# Test the result of rendering two tori with separate textures.
# The expected result is consistent with rendering them each alone.
torch.manual_seed(1)
device = torch.device("cuda:0")
plain_torus = torus(r=1, R=4, sides=5, rings=6, device=device)
[verts] = plain_torus.verts_list()
verts_shifted1 = verts.clone()
verts_shifted1 *= 1.2
verts_shifted1[:, 0] += 4
verts_shifted1[:, 1] += 5
verts[:, 0] -= 4
verts[:, 1] -= 4
[faces] = plain_torus.faces_list()
map_size = 3
# Two random atlases.
# The averaging of the random numbers here is not consistent with the
# meaning of the atlases, but makes each face a bit smoother than
# if everything had a random color.
atlas1 = torch.rand(size=(faces.shape[0], map_size, map_size, 3), device=device)
atlas1[:, 1] = 0.5 * atlas1[:, 0] + 0.5 * atlas1[:, 2]
atlas1[:, :, 1] = 0.5 * atlas1[:, :, 0] + 0.5 * atlas1[:, :, 2]
atlas2 = torch.rand(size=(faces.shape[0], map_size, map_size, 3), device=device)
atlas2[:, 1] = 0.5 * atlas2[:, 0] + 0.5 * atlas2[:, 2]
atlas2[:, :, 1] = 0.5 * atlas2[:, :, 0] + 0.5 * atlas2[:, :, 2]
textures1 = TexturesAtlas(atlas=[atlas1])
textures2 = TexturesAtlas(atlas=[atlas2])
mesh1 = Meshes(verts=[verts], faces=[faces], textures=textures1)
mesh2 = Meshes(verts=[verts_shifted1], faces=[faces], textures=textures2)
mesh_joined = join_meshes_as_scene([mesh1, mesh2])
R, T = look_at_view_transform(18, 0, 0)
cameras = FoVPerspectiveCameras(device=device, R=R, T=T)
raster_settings = RasterizationSettings(
image_size=512, blur_radius=0.0, faces_per_pixel=1
)
lights = PointLights(
device=device,
ambient_color=((1.0, 1.0, 1.0),),
diffuse_color=((0.0, 0.0, 0.0),),
specular_color=((0.0, 0.0, 0.0),),
)
blend_params = BlendParams(
sigma=1e-1,
gamma=1e-4,
background_color=torch.tensor([1.0, 1.0, 1.0], device=device),
)
renderer = MeshRenderer(
rasterizer=MeshRasterizer(cameras=cameras, raster_settings=raster_settings),
shader=HardPhongShader(
device=device, blend_params=blend_params, cameras=cameras, lights=lights
),
)
output = renderer(mesh_joined)
image_ref = load_rgb_image("test_joinatlas_final.png", DATA_DIR)
if DEBUG:
debugging_outputs = []
for mesh_ in [mesh1, mesh2]:
debugging_outputs.append(renderer(mesh_))
Image.fromarray(
(output[0, ..., :3].cpu().numpy() * 255).astype(np.uint8)
).save(DATA_DIR / "test_joinatlas_final_.png")
Image.fromarray(
(debugging_outputs[0][0, ..., :3].cpu().numpy() * 255).astype(np.uint8)
).save(DATA_DIR / "test_joinatlas_1.png")
Image.fromarray(
(debugging_outputs[1][0, ..., :3].cpu().numpy() * 255).astype(np.uint8)
).save(DATA_DIR / "test_joinatlas_2.png")
result = output[0, ..., :3].cpu()
self.assertClose(result, image_ref, atol=0.05)
def test_joined_spheres(self):
"""
Test a list of Meshes can be joined as a single mesh and
@ -595,7 +881,7 @@ class TestRenderMeshes(TestCaseMixin, unittest.TestCase):
sphere_mesh_list.append(
Meshes(verts=verts, faces=sphere_list[i].faces_padded())
)
joined_sphere_mesh = join_mesh(sphere_mesh_list)
joined_sphere_mesh = join_meshes_as_scene(sphere_mesh_list)
joined_sphere_mesh.textures = TexturesVertex(
verts_features=torch.ones_like(joined_sphere_mesh.verts_padded())
)

View File

@ -12,6 +12,7 @@ from pytorch3d.renderer.mesh.textures import (
TexturesUV,
TexturesVertex,
_list_to_padded_wrapper,
pack_rectangles,
)
from pytorch3d.structures import Meshes, list_to_packed, packed_to_list
from test_meshes import TestMeshes
@ -730,3 +731,80 @@ class TestTexturesUV(TestCaseMixin, unittest.TestCase):
index = torch.tensor([1, 2], dtype=torch.int64)
tryindex(self, index, tex, meshes, source)
tryindex(self, [2, 4], tex, meshes, source)
class TestRectanglePacking(TestCaseMixin, unittest.TestCase):
def setUp(self) -> None:
super().setUp()
torch.manual_seed(42)
def wrap_pack(self, sizes):
"""
Call the pack_rectangles function, which we want to test,
and return its outputs.
Additionally makes some sanity checks on the output.
"""
res = pack_rectangles(sizes)
total = res.total_size
self.assertGreaterEqual(total[0], 0)
self.assertGreaterEqual(total[1], 0)
mask = torch.zeros(total, dtype=torch.bool)
seen_x_bound = False
seen_y_bound = False
for (in_x, in_y), loc in zip(sizes, res.locations):
self.assertGreaterEqual(loc[0], 0)
self.assertGreaterEqual(loc[1], 0)
placed_x, placed_y = (in_y, in_x) if loc[2] else (in_x, in_y)
upper_x = placed_x + loc[0]
upper_y = placed_y + loc[1]
self.assertGreaterEqual(total[0], upper_x)
if total[0] == upper_x:
seen_x_bound = True
self.assertGreaterEqual(total[1], upper_y)
if total[1] == upper_y:
seen_y_bound = True
already_taken = torch.sum(mask[loc[0] : upper_x, loc[1] : upper_y])
self.assertEqual(already_taken, 0)
mask[loc[0] : upper_x, loc[1] : upper_y] = 1
self.assertTrue(seen_x_bound)
self.assertTrue(seen_y_bound)
self.assertTrue(torch.all(torch.sum(mask, dim=0, dtype=torch.int32) > 0))
self.assertTrue(torch.all(torch.sum(mask, dim=1, dtype=torch.int32) > 0))
return res
def assert_bb(self, sizes, expected):
"""
Apply the pack_rectangles function to sizes and verify the
bounding box dimensions are expected.
"""
self.assertSetEqual(set(self.wrap_pack(sizes).total_size), expected)
def test_simple(self):
self.assert_bb([(3, 4), (4, 3)], {6, 4})
self.assert_bb([(2, 2), (2, 4), (2, 2)], {4, 4})
# many squares
self.assert_bb([(2, 2)] * 9, {2, 18})
# One big square and many small ones.
self.assert_bb([(3, 3)] + [(1, 1)] * 2, {3, 4})
self.assert_bb([(3, 3)] + [(1, 1)] * 3, {3, 4})
self.assert_bb([(3, 3)] + [(1, 1)] * 4, {3, 5})
self.assert_bb([(3, 3)] + [(1, 1)] * 5, {3, 5})
self.assert_bb([(1, 1)] * 6 + [(3, 3)], {3, 5})
self.assert_bb([(3, 3)] + [(1, 1)] * 7, {3, 6})
# many identical rectangles
self.assert_bb([(7, 190)] * 4 + [(190, 7)] * 4, {190, 56})
# require placing the flipped version of a rectangle
self.assert_bb([(1, 100), (5, 96), (4, 5)], {100, 6})
def test_random(self):
for _ in range(5):
vals = torch.randint(size=(20, 2), low=1, high=18)
sizes = []
for j in range(vals.shape[0]):
sizes.append((int(vals[j, 0]), int(vals[j, 1])))
self.wrap_pack(sizes)