mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 03:42:50 +08:00
lint fix: raise from None
Summary: New linter warning is complaining about `raise` inside `except`. Reviewed By: kjchalup Differential Revision: D37819264 fbshipit-source-id: 56ad5d0558ea39e1125f3c76b43b7376aea2bc7c
This commit is contained in:
parent
8ba9a694ee
commit
8e0c82b89a
@ -276,7 +276,7 @@ def _read_binvox_header(f): # pragma: no cover
|
|||||||
try:
|
try:
|
||||||
dims = [int(d) for d in dims[1:]]
|
dims = [int(d) for d in dims[1:]]
|
||||||
except ValueError:
|
except ValueError:
|
||||||
raise ValueError("Invalid header (line 2)")
|
raise ValueError("Invalid header (line 2)") from None
|
||||||
if len(dims) != 3 or dims[0] != dims[1] or dims[0] != dims[2]:
|
if len(dims) != 3 or dims[0] != dims[1] or dims[0] != dims[2]:
|
||||||
raise ValueError("Invalid header (line 2)")
|
raise ValueError("Invalid header (line 2)")
|
||||||
size = dims[0]
|
size = dims[0]
|
||||||
@ -291,7 +291,7 @@ def _read_binvox_header(f): # pragma: no cover
|
|||||||
try:
|
try:
|
||||||
translation = tuple(float(t) for t in translation[1:])
|
translation = tuple(float(t) for t in translation[1:])
|
||||||
except ValueError:
|
except ValueError:
|
||||||
raise ValueError("Invalid header (line 3)")
|
raise ValueError("Invalid header (line 3)") from None
|
||||||
|
|
||||||
# Fourth line of the header should be "scale [float]"
|
# Fourth line of the header should be "scale [float]"
|
||||||
line = f.readline().strip()
|
line = f.readline().strip()
|
||||||
|
@ -107,7 +107,7 @@ class Autodecoder(Configurable, torch.nn.Module):
|
|||||||
device=next(self.parameters()).device,
|
device=next(self.parameters()).device,
|
||||||
)
|
)
|
||||||
except StopIteration:
|
except StopIteration:
|
||||||
raise ValueError("Not enough n_instances in the autodecoder")
|
raise ValueError("Not enough n_instances in the autodecoder") from None
|
||||||
|
|
||||||
# pyre-fixme[29]: `Union[torch.Tensor, torch.nn.Module]` is not a function.
|
# pyre-fixme[29]: `Union[torch.Tensor, torch.nn.Module]` is not a function.
|
||||||
return self._autodecoder_codes(x)
|
return self._autodecoder_codes(x)
|
||||||
|
@ -238,7 +238,7 @@ class Stats(object):
|
|||||||
"could not extract prediction %s\
|
"could not extract prediction %s\
|
||||||
from the prediction dictionary"
|
from the prediction dictionary"
|
||||||
% stat
|
% stat
|
||||||
)
|
) from None
|
||||||
else:
|
else:
|
||||||
val = None
|
val = None
|
||||||
|
|
||||||
|
@ -85,7 +85,7 @@ def _read_faces_lump(
|
|||||||
if n_faces > 1 and "Wrong number of columns" in e.args[0]:
|
if n_faces > 1 and "Wrong number of columns" in e.args[0]:
|
||||||
file.seek(old_offset)
|
file.seek(old_offset)
|
||||||
return None
|
return None
|
||||||
raise ValueError("Not enough face data.")
|
raise ValueError("Not enough face data.") from None
|
||||||
|
|
||||||
if len(data) != n_faces:
|
if len(data) != n_faces:
|
||||||
raise ValueError("Not enough face data.")
|
raise ValueError("Not enough face data.")
|
||||||
@ -247,11 +247,11 @@ def _load_off_stream(file) -> dict:
|
|||||||
try:
|
try:
|
||||||
n_verts = int(items[0])
|
n_verts = int(items[0])
|
||||||
except ValueError:
|
except ValueError:
|
||||||
raise ValueError("Invalid counts line: %s" % header)
|
raise ValueError("Invalid counts line: %s" % header) from None
|
||||||
try:
|
try:
|
||||||
n_faces = int(items[1])
|
n_faces = int(items[1])
|
||||||
except ValueError:
|
except ValueError:
|
||||||
raise ValueError("Invalid counts line: %s" % header)
|
raise ValueError("Invalid counts line: %s" % header) from None
|
||||||
|
|
||||||
if (len(items) > 3 and not items[3].startswith(b"#")) or n_verts < 0 or n_faces < 0:
|
if (len(items) > 3 and not items[3].startswith(b"#")) or n_verts < 0 or n_faces < 0:
|
||||||
raise ValueError("Invalid counts line: %s" % header)
|
raise ValueError("Invalid counts line: %s" % header)
|
||||||
|
@ -236,7 +236,7 @@ class _PlyHeader:
|
|||||||
count = int(items[2])
|
count = int(items[2])
|
||||||
except ValueError:
|
except ValueError:
|
||||||
msg = "Number of items for %s was not a number."
|
msg = "Number of items for %s was not a number."
|
||||||
raise ValueError(msg % items[1])
|
raise ValueError(msg % items[1]) from None
|
||||||
self.elements.append(_PlyElementType(items[1], count))
|
self.elements.append(_PlyElementType(items[1], count))
|
||||||
|
|
||||||
|
|
||||||
@ -409,12 +409,12 @@ def _parse_heterogeneous_property_ascii(datum, line_iter, property: _Property):
|
|||||||
else:
|
else:
|
||||||
datum.append(int(value))
|
datum.append(int(value))
|
||||||
except ValueError:
|
except ValueError:
|
||||||
raise ValueError("Bad numerical data.")
|
raise ValueError("Bad numerical data.") from None
|
||||||
else:
|
else:
|
||||||
try:
|
try:
|
||||||
length = int(value)
|
length = int(value)
|
||||||
except ValueError:
|
except ValueError:
|
||||||
raise ValueError("A list length was not a number.")
|
raise ValueError("A list length was not a number.") from None
|
||||||
list_value = np.zeros(length, dtype=_PLY_TYPES[property.data_type].np_type)
|
list_value = np.zeros(length, dtype=_PLY_TYPES[property.data_type].np_type)
|
||||||
for i in range(length):
|
for i in range(length):
|
||||||
inner_value = next(line_iter, None)
|
inner_value = next(line_iter, None)
|
||||||
@ -423,7 +423,7 @@ def _parse_heterogeneous_property_ascii(datum, line_iter, property: _Property):
|
|||||||
try:
|
try:
|
||||||
list_value[i] = float(inner_value)
|
list_value[i] = float(inner_value)
|
||||||
except ValueError:
|
except ValueError:
|
||||||
raise ValueError("Bad numerical data.")
|
raise ValueError("Bad numerical data.") from None
|
||||||
datum.append(list_value)
|
datum.append(list_value)
|
||||||
|
|
||||||
|
|
||||||
|
@ -141,7 +141,7 @@ def iterative_closest_point(
|
|||||||
"(minibatch, dim, dim), T is a batch of dim-dimensional "
|
"(minibatch, dim, dim), T is a batch of dim-dimensional "
|
||||||
"translations of shape (minibatch, dim) and s is a batch "
|
"translations of shape (minibatch, dim) and s is a batch "
|
||||||
"of scalars of shape (minibatch,)."
|
"of scalars of shape (minibatch,)."
|
||||||
)
|
) from None
|
||||||
# apply the init transform to the input point cloud
|
# apply the init transform to the input point cloud
|
||||||
Xt = _apply_similarity_transform(Xt, R, T, s)
|
Xt = _apply_similarity_transform(Xt, R, T, s)
|
||||||
else:
|
else:
|
||||||
|
Loading…
x
Reference in New Issue
Block a user