lint fix: raise from None

Summary: New linter warning is complaining about `raise` inside `except`.

Reviewed By: kjchalup

Differential Revision: D37819264

fbshipit-source-id: 56ad5d0558ea39e1125f3c76b43b7376aea2bc7c
This commit is contained in:
Jeremy Reizenstein 2022-07-14 04:21:44 -07:00 committed by Facebook GitHub Bot
parent 8ba9a694ee
commit 8e0c82b89a
6 changed files with 12 additions and 12 deletions

View File

@ -276,7 +276,7 @@ def _read_binvox_header(f): # pragma: no cover
try: try:
dims = [int(d) for d in dims[1:]] dims = [int(d) for d in dims[1:]]
except ValueError: except ValueError:
raise ValueError("Invalid header (line 2)") raise ValueError("Invalid header (line 2)") from None
if len(dims) != 3 or dims[0] != dims[1] or dims[0] != dims[2]: if len(dims) != 3 or dims[0] != dims[1] or dims[0] != dims[2]:
raise ValueError("Invalid header (line 2)") raise ValueError("Invalid header (line 2)")
size = dims[0] size = dims[0]
@ -291,7 +291,7 @@ def _read_binvox_header(f): # pragma: no cover
try: try:
translation = tuple(float(t) for t in translation[1:]) translation = tuple(float(t) for t in translation[1:])
except ValueError: except ValueError:
raise ValueError("Invalid header (line 3)") raise ValueError("Invalid header (line 3)") from None
# Fourth line of the header should be "scale [float]" # Fourth line of the header should be "scale [float]"
line = f.readline().strip() line = f.readline().strip()

View File

@ -107,7 +107,7 @@ class Autodecoder(Configurable, torch.nn.Module):
device=next(self.parameters()).device, device=next(self.parameters()).device,
) )
except StopIteration: except StopIteration:
raise ValueError("Not enough n_instances in the autodecoder") raise ValueError("Not enough n_instances in the autodecoder") from None
# pyre-fixme[29]: `Union[torch.Tensor, torch.nn.Module]` is not a function. # pyre-fixme[29]: `Union[torch.Tensor, torch.nn.Module]` is not a function.
return self._autodecoder_codes(x) return self._autodecoder_codes(x)

View File

@ -238,7 +238,7 @@ class Stats(object):
"could not extract prediction %s\ "could not extract prediction %s\
from the prediction dictionary" from the prediction dictionary"
% stat % stat
) ) from None
else: else:
val = None val = None

View File

@ -85,7 +85,7 @@ def _read_faces_lump(
if n_faces > 1 and "Wrong number of columns" in e.args[0]: if n_faces > 1 and "Wrong number of columns" in e.args[0]:
file.seek(old_offset) file.seek(old_offset)
return None return None
raise ValueError("Not enough face data.") raise ValueError("Not enough face data.") from None
if len(data) != n_faces: if len(data) != n_faces:
raise ValueError("Not enough face data.") raise ValueError("Not enough face data.")
@ -247,11 +247,11 @@ def _load_off_stream(file) -> dict:
try: try:
n_verts = int(items[0]) n_verts = int(items[0])
except ValueError: except ValueError:
raise ValueError("Invalid counts line: %s" % header) raise ValueError("Invalid counts line: %s" % header) from None
try: try:
n_faces = int(items[1]) n_faces = int(items[1])
except ValueError: except ValueError:
raise ValueError("Invalid counts line: %s" % header) raise ValueError("Invalid counts line: %s" % header) from None
if (len(items) > 3 and not items[3].startswith(b"#")) or n_verts < 0 or n_faces < 0: if (len(items) > 3 and not items[3].startswith(b"#")) or n_verts < 0 or n_faces < 0:
raise ValueError("Invalid counts line: %s" % header) raise ValueError("Invalid counts line: %s" % header)

View File

@ -236,7 +236,7 @@ class _PlyHeader:
count = int(items[2]) count = int(items[2])
except ValueError: except ValueError:
msg = "Number of items for %s was not a number." msg = "Number of items for %s was not a number."
raise ValueError(msg % items[1]) raise ValueError(msg % items[1]) from None
self.elements.append(_PlyElementType(items[1], count)) self.elements.append(_PlyElementType(items[1], count))
@ -409,12 +409,12 @@ def _parse_heterogeneous_property_ascii(datum, line_iter, property: _Property):
else: else:
datum.append(int(value)) datum.append(int(value))
except ValueError: except ValueError:
raise ValueError("Bad numerical data.") raise ValueError("Bad numerical data.") from None
else: else:
try: try:
length = int(value) length = int(value)
except ValueError: except ValueError:
raise ValueError("A list length was not a number.") raise ValueError("A list length was not a number.") from None
list_value = np.zeros(length, dtype=_PLY_TYPES[property.data_type].np_type) list_value = np.zeros(length, dtype=_PLY_TYPES[property.data_type].np_type)
for i in range(length): for i in range(length):
inner_value = next(line_iter, None) inner_value = next(line_iter, None)
@ -423,7 +423,7 @@ def _parse_heterogeneous_property_ascii(datum, line_iter, property: _Property):
try: try:
list_value[i] = float(inner_value) list_value[i] = float(inner_value)
except ValueError: except ValueError:
raise ValueError("Bad numerical data.") raise ValueError("Bad numerical data.") from None
datum.append(list_value) datum.append(list_value)

View File

@ -141,7 +141,7 @@ def iterative_closest_point(
"(minibatch, dim, dim), T is a batch of dim-dimensional " "(minibatch, dim, dim), T is a batch of dim-dimensional "
"translations of shape (minibatch, dim) and s is a batch " "translations of shape (minibatch, dim) and s is a batch "
"of scalars of shape (minibatch,)." "of scalars of shape (minibatch,)."
) ) from None
# apply the init transform to the input point cloud # apply the init transform to the input point cloud
Xt = _apply_similarity_transform(Xt, R, T, s) Xt = _apply_similarity_transform(Xt, R, T, s)
else: else: