Consolidate mesh backward kernels

Summary: This diff creates the generic MeshBackwardKernel which can handle distance calculations between point, edge and faces in either direction. Replaces only point_mesh_face code for now.

Reviewed By: gkioxari

Differential Revision: D24549374

fbshipit-source-id: 2853c1da1c2a6b6de8d0e40007ba0735b8959044
This commit is contained in:
Dave Schnizlein 2020-11-10 09:32:33 -08:00 committed by Facebook GitHub Bot
parent c41aff23f0
commit 8dcfe30f66

View File

@ -212,86 +212,135 @@ std::tuple<at::Tensor, at::Tensor> PointFaceDistanceForwardCuda(
points, 1, points_first_idx, tris, 3, tris_first_idx, max_points);
}
__global__ void PointFaceBackwardKernel(
const float* __restrict__ points, // (P, 3)
const float* __restrict__ tris, // (T, 3, 3)
const int64_t* __restrict__ idx_points, // (P,)
const float* __restrict__ grad_dists, // (P,)
float* __restrict__ grad_points, // (P, 3)
float* __restrict__ grad_tris, // (T, 3, 3)
const size_t P) {
float3* points_f3 = (float3*)points;
float3* tris_f3 = (float3*)tris;
__global__ void DistanceBackwardKernel(
const float* __restrict__ objects, // (O * oD * 3)
const size_t objects_size, // O
const size_t objects_dim, // oD
const float* __restrict__ targets, // (T * tD * 3)
const size_t targets_dim, // tD
const int64_t* __restrict__ idx_objects, // (O,)
const float* __restrict__ grad_dists, // (O,)
float* __restrict__ grad_points, // ((O or T) * 3)
float* __restrict__ grad_face) { // ((O or T) * max(oD, tD) * 3)
// This kernel is used interchangeably to compute bi-directional backward
// distances between points and triangles/lines. The direction of the distance
// computed, i.e. point to triangle/line or triangle/line to point, depends on
// the order of the input arguments and is inferred based on their shape. The
// shape is used to distinguish between triangles and lines. Note that
// grad_points will always be used for the point data and grad_face for the
// edge/triangle
// Set references to points/face based on whether objects/targets are which
float3* points_f3 = objects_dim == 1 ? (float3*)objects : (float3*)targets;
float3* face_f3 = objects_dim == 1 ? (float3*)targets : (float3*)objects;
const size_t tid = blockIdx.x * blockDim.x + threadIdx.x;
const size_t stride = gridDim.x * blockDim.x;
for (size_t p = tid; p < P; p += stride) {
const float3 p_f3 = points_f3[p];
for (size_t o = tid; o < objects_size; o += stride) {
const int64_t tidx = idx_objects[o];
const int64_t tidx = idx_points[p];
const float3 v0 = tris_f3[tidx * 3 + 0];
const float3 v1 = tris_f3[tidx * 3 + 1];
const float3 v2 = tris_f3[tidx * 3 + 2];
size_t point_index = objects_dim == 1 ? o : tidx;
size_t face_index = objects_dim == 1 ? tidx * targets_dim : o * objects_dim;
bool isTriangle = objects_dim == 3 || targets_dim == 3;
const float grad_dist = grad_dists[p];
float3 grad_point, grad_v0, grad_v1, grad_v2;
if (isTriangle) {
const auto grads = PointTriangle3DistanceBackward(
points_f3[point_index],
face_f3[face_index],
face_f3[face_index + 1],
face_f3[face_index + 2],
grad_dists[o]);
grad_point = thrust::get<0>(grads);
grad_v0 = thrust::get<1>(grads);
grad_v1 = thrust::get<2>(grads);
grad_v2 = thrust::get<3>(grads);
} else {
const auto grads = PointLine3DistanceBackward(
points_f3[point_index],
face_f3[face_index],
face_f3[face_index + 1],
grad_dists[o]);
grad_point = thrust::get<0>(grads);
grad_v0 = thrust::get<1>(grads);
grad_v1 = thrust::get<2>(grads);
}
const auto grads =
PointTriangle3DistanceBackward(p_f3, v0, v1, v2, grad_dist);
const float3 grad_point = thrust::get<0>(grads);
const float3 grad_v0 = thrust::get<1>(grads);
const float3 grad_v1 = thrust::get<2>(grads);
const float3 grad_v2 = thrust::get<3>(grads);
atomicAdd(grad_points + point_index * 3 + 0, grad_point.x);
atomicAdd(grad_points + point_index * 3 + 1, grad_point.y);
atomicAdd(grad_points + point_index * 3 + 2, grad_point.z);
atomicAdd(grad_points + p * 3 + 0, grad_point.x);
atomicAdd(grad_points + p * 3 + 1, grad_point.y);
atomicAdd(grad_points + p * 3 + 2, grad_point.z);
atomicAdd(grad_face + face_index * 3 + 0 * 3 + 0, grad_v0.x);
atomicAdd(grad_face + face_index * 3 + 0 * 3 + 1, grad_v0.y);
atomicAdd(grad_face + face_index * 3 + 0 * 3 + 2, grad_v0.z);
atomicAdd(grad_tris + tidx * 3 * 3 + 0 * 3 + 0, grad_v0.x);
atomicAdd(grad_tris + tidx * 3 * 3 + 0 * 3 + 1, grad_v0.y);
atomicAdd(grad_tris + tidx * 3 * 3 + 0 * 3 + 2, grad_v0.z);
atomicAdd(grad_face + face_index * 3 + 1 * 3 + 0, grad_v1.x);
atomicAdd(grad_face + face_index * 3 + 1 * 3 + 1, grad_v1.y);
atomicAdd(grad_face + face_index * 3 + 1 * 3 + 2, grad_v1.z);
atomicAdd(grad_tris + tidx * 3 * 3 + 1 * 3 + 0, grad_v1.x);
atomicAdd(grad_tris + tidx * 3 * 3 + 1 * 3 + 1, grad_v1.y);
atomicAdd(grad_tris + tidx * 3 * 3 + 1 * 3 + 2, grad_v1.z);
atomicAdd(grad_tris + tidx * 3 * 3 + 2 * 3 + 0, grad_v2.x);
atomicAdd(grad_tris + tidx * 3 * 3 + 2 * 3 + 1, grad_v2.y);
atomicAdd(grad_tris + tidx * 3 * 3 + 2 * 3 + 2, grad_v2.z);
if (isTriangle) {
atomicAdd(grad_face + face_index * 3 + 2 * 3 + 0, grad_v2.x);
atomicAdd(grad_face + face_index * 3 + 2 * 3 + 1, grad_v2.y);
atomicAdd(grad_face + face_index * 3 + 2 * 3 + 2, grad_v2.z);
}
}
}
std::tuple<at::Tensor, at::Tensor> PointFaceDistanceBackwardCuda(
const at::Tensor& points,
const at::Tensor& tris,
const at::Tensor& idx_points,
std::tuple<at::Tensor, at::Tensor> DistanceBackwardCuda(
const at::Tensor& objects,
const size_t objects_dim,
const at::Tensor& targets,
const size_t targets_dim,
const at::Tensor& idx_objects,
const at::Tensor& grad_dists) {
// Check inputs are on the same device
at::TensorArg points_t{points, "points", 1},
idx_points_t{idx_points, "idx_points", 2}, tris_t{tris, "tris", 3},
at::TensorArg objects_t{objects, "objects", 1},
targets_t{targets, "targets", 2},
idx_objects_t{idx_objects, "idx_objects", 3},
grad_dists_t{grad_dists, "grad_dists", 4};
at::CheckedFrom c = "PointFaceDistanceBackwardCuda";
at::checkAllSameGPU(c, {points_t, idx_points_t, tris_t, grad_dists_t});
at::checkAllSameType(c, {points_t, tris_t, grad_dists_t});
at::CheckedFrom c = "DistanceBackwardCuda";
at::checkAllSameGPU(c, {objects_t, targets_t, idx_objects_t, grad_dists_t});
at::checkAllSameType(c, {objects_t, targets_t, grad_dists_t});
// Set the device for the kernel launch based on the device of the input
at::cuda::CUDAGuard device_guard(points.device());
at::cuda::CUDAGuard device_guard(objects.device());
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
const int64_t P = points.size(0);
const int64_t T = tris.size(0);
const int64_t objects_size = objects.size(0);
const int64_t targets_size = targets.size(0);
TORCH_CHECK(points.size(1) == 3, "points must be of shape Px3");
TORCH_CHECK(
(tris.size(1) == 3) && (tris.size(2) == 3),
"tris must be of shape Tx3x3");
TORCH_CHECK(idx_points.size(0) == P);
TORCH_CHECK(grad_dists.size(0) == P);
at::Tensor grad_points;
at::Tensor grad_tris;
// clang-format off
at::Tensor grad_points = at::zeros({P, 3}, points.options());
at::Tensor grad_tris = at::zeros({T, 3, 3}, tris.options());
// clang-format on
TORCH_CHECK(idx_objects.size(0) == objects_size);
TORCH_CHECK(grad_dists.size(0) == objects_size);
if (objects_dim == 1) {
TORCH_CHECK(
targets_dim >= 2 && targets_dim <= 3,
"either object or target must be edge or face");
TORCH_CHECK(objects.size(1) == 3, "points must be of shape Px3");
TORCH_CHECK(
targets.size(2) == 3,
"face must be of shape Tx3x3, lines must be of shape Tx2x3");
// clang-format off
grad_points = at::zeros({objects_size, 3}, objects.options());
grad_tris = at::zeros({targets_size, int64_t(targets_dim), 3}, targets.options());
// clang-format on
} else {
TORCH_CHECK(targets_dim == 1, "either object or target must be point");
TORCH_CHECK(
objects_dim >= 2 && objects_dim <= 3,
"either object or target must be edge or face");
TORCH_CHECK(targets.size(1) == 3, "points must be of shape Px3");
TORCH_CHECK(
objects.size(2) == 3,
"face must be of shape Tx3x3, lines must be of shape Tx2x3");
// clang-format off
grad_points = at::zeros({targets_size, 3}, targets.options());
grad_tris = at::zeros({objects_size, int64_t(objects_dim), 3}, objects.options());
// clang-format on
}
if (grad_points.numel() == 0 || grad_tris.numel() == 0) {
AT_CUDA_CHECK(cudaGetLastError());
@ -301,19 +350,29 @@ std::tuple<at::Tensor, at::Tensor> PointFaceDistanceBackwardCuda(
const int blocks = 64;
const int threads = 512;
PointFaceBackwardKernel<<<blocks, threads, 0, stream>>>(
points.contiguous().data_ptr<float>(),
tris.contiguous().data_ptr<float>(),
idx_points.contiguous().data_ptr<int64_t>(),
DistanceBackwardKernel<<<blocks, threads, 0, stream>>>(
objects.contiguous().data_ptr<float>(),
objects_size,
objects_dim,
targets.contiguous().data_ptr<float>(),
targets_dim,
idx_objects.contiguous().data_ptr<int64_t>(),
grad_dists.contiguous().data_ptr<float>(),
grad_points.data_ptr<float>(),
grad_tris.data_ptr<float>(),
P);
grad_tris.data_ptr<float>());
AT_CUDA_CHECK(cudaGetLastError());
return std::make_tuple(grad_points, grad_tris);
}
std::tuple<at::Tensor, at::Tensor> PointFaceDistanceBackwardCuda(
const at::Tensor& points,
const at::Tensor& tris,
const at::Tensor& idx_points,
const at::Tensor& grad_dists) {
return DistanceBackwardCuda(points, 1, tris, 3, idx_points, grad_dists);
}
// ****************************************************************************
// * FacePointDistance *
// ****************************************************************************
@ -328,107 +387,12 @@ std::tuple<at::Tensor, at::Tensor> FacePointDistanceForwardCuda(
tris, 3, tris_first_idx, points, 1, points_first_idx, max_tris);
}
__global__ void FacePointBackwardKernel(
const float* __restrict__ points, // (P, 3)
const float* __restrict__ tris, // (T, 3, 3)
const int64_t* __restrict__ idx_tris, // (T,)
const float* __restrict__ grad_dists, // (T,)
float* __restrict__ grad_points, // (P, 3)
float* __restrict__ grad_tris, // (T, 3, 3)
const size_t T) {
float3* points_f3 = (float3*)points;
float3* tris_f3 = (float3*)tris;
const size_t tid = blockIdx.x * blockDim.x + threadIdx.x;
const size_t stride = gridDim.x * blockDim.x;
for (size_t t = tid; t < T; t += stride) {
const float3 v0 = tris_f3[t * 3 + 0];
const float3 v1 = tris_f3[t * 3 + 1];
const float3 v2 = tris_f3[t * 3 + 2];
const int64_t pidx = idx_tris[t];
const float3 p_f3 = points_f3[pidx];
const float grad_dist = grad_dists[t];
const auto grads =
PointTriangle3DistanceBackward(p_f3, v0, v1, v2, grad_dist);
const float3 grad_point = thrust::get<0>(grads);
const float3 grad_v0 = thrust::get<1>(grads);
const float3 grad_v1 = thrust::get<2>(grads);
const float3 grad_v2 = thrust::get<3>(grads);
atomicAdd(grad_points + pidx * 3 + 0, grad_point.x);
atomicAdd(grad_points + pidx * 3 + 1, grad_point.y);
atomicAdd(grad_points + pidx * 3 + 2, grad_point.z);
atomicAdd(grad_tris + t * 3 * 3 + 0 * 3 + 0, grad_v0.x);
atomicAdd(grad_tris + t * 3 * 3 + 0 * 3 + 1, grad_v0.y);
atomicAdd(grad_tris + t * 3 * 3 + 0 * 3 + 2, grad_v0.z);
atomicAdd(grad_tris + t * 3 * 3 + 1 * 3 + 0, grad_v1.x);
atomicAdd(grad_tris + t * 3 * 3 + 1 * 3 + 1, grad_v1.y);
atomicAdd(grad_tris + t * 3 * 3 + 1 * 3 + 2, grad_v1.z);
atomicAdd(grad_tris + t * 3 * 3 + 2 * 3 + 0, grad_v2.x);
atomicAdd(grad_tris + t * 3 * 3 + 2 * 3 + 1, grad_v2.y);
atomicAdd(grad_tris + t * 3 * 3 + 2 * 3 + 2, grad_v2.z);
}
}
std::tuple<at::Tensor, at::Tensor> FacePointDistanceBackwardCuda(
const at::Tensor& points,
const at::Tensor& tris,
const at::Tensor& idx_tris,
const at::Tensor& grad_dists) {
// Check inputs are on the same device
at::TensorArg points_t{points, "points", 1},
idx_tris_t{idx_tris, "idx_tris", 2}, tris_t{tris, "tris", 3},
grad_dists_t{grad_dists, "grad_dists", 4};
at::CheckedFrom c = "FacePointDistanceBackwardCuda";
at::checkAllSameGPU(c, {points_t, idx_tris_t, tris_t, grad_dists_t});
at::checkAllSameType(c, {points_t, tris_t, grad_dists_t});
// Set the device for the kernel launch based on the device of the input
at::cuda::CUDAGuard device_guard(points.device());
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
const int64_t P = points.size(0);
const int64_t T = tris.size(0);
TORCH_CHECK(points.size(1) == 3, "points must be of shape Px3");
TORCH_CHECK(
(tris.size(1) == 3) && (tris.size(2) == 3),
"tris must be of shape Tx3x3");
TORCH_CHECK(idx_tris.size(0) == T);
TORCH_CHECK(grad_dists.size(0) == T);
// clang-format off
at::Tensor grad_points = at::zeros({P, 3}, points.options());
at::Tensor grad_tris = at::zeros({T, 3, 3}, tris.options());
// clang-format on
if (grad_points.numel() == 0 || grad_tris.numel() == 0) {
AT_CUDA_CHECK(cudaGetLastError());
return std::make_tuple(grad_points, grad_tris);
}
const int blocks = 64;
const int threads = 512;
FacePointBackwardKernel<<<blocks, threads, 0, stream>>>(
points.contiguous().data_ptr<float>(),
tris.contiguous().data_ptr<float>(),
idx_tris.contiguous().data_ptr<int64_t>(),
grad_dists.contiguous().data_ptr<float>(),
grad_points.data_ptr<float>(),
grad_tris.data_ptr<float>(),
T);
AT_CUDA_CHECK(cudaGetLastError());
return std::make_tuple(grad_points, grad_tris);
return DistanceBackwardCuda(tris, 3, points, 1, idx_tris, grad_dists);
}
// ****************************************************************************