renderer: add support for rendering high dimensional textures for classification/segmentation use cases (#1248)

Summary:
For 3D segmentation problems it's really useful to be able to train the models from multiple viewpoints using Pytorch3D as the renderer. Currently due to hardcoded assumptions in a few spots the mesh renderer only supports rendering RGB (3 dimensional) data. You can encode the classification information as 3 channel data but if you have more than 3 classes you're out of luck.

This relaxes the assumptions to make rendering semantic classes work with `HardFlatShader` and `AmbientLights` with no diffusion/specular. The other shaders/lights don't make any sense for classification since they mutate the texture values in some way.

This only requires changes in `Materials` and `AmbientLights`. The bulk of the code is the unit test.

Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/1248

Test Plan: Added unit test that renders a 5 dimensional texture and compare dimensions 2-5 to a stored picture.

Reviewed By: bottler

Differential Revision: D37764610

Pulled By: d4l3k

fbshipit-source-id: 031895724d9318a6f6bab5b31055bb3f438176a5
This commit is contained in:
Tristan Rice
2022-07-11 21:22:45 -07:00
committed by Facebook GitHub Bot
parent aa8b03f31d
commit 8d10ba52b2
4 changed files with 101 additions and 12 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 56 KiB

View File

@@ -1236,3 +1236,81 @@ class TestRenderMeshes(TestCaseMixin, unittest.TestCase):
"test_simple_sphere_light_phong_%s.png" % cam_type.__name__, DATA_DIR
)
self.assertClose(rgb, image_ref, atol=0.05)
def test_nd_sphere(self):
"""
Test that the render can handle textures with more than 3 channels and
not just 3 channel RGB.
"""
torch.manual_seed(1)
device = torch.device("cuda:0")
C = 5
WHITE = ((1.0,) * C,)
BLACK = ((0.0,) * C,)
# Init mesh
sphere_mesh = ico_sphere(5, device)
verts_padded = sphere_mesh.verts_padded()
faces_padded = sphere_mesh.faces_padded()
feats = torch.ones(*verts_padded.shape[:-1], C, device=device)
n_verts = feats.shape[1]
# make some non-uniform pattern
feats *= torch.arange(0, 10, step=10 / n_verts, device=device).unsqueeze(1)
textures = TexturesVertex(verts_features=feats)
sphere_mesh = Meshes(verts=verts_padded, faces=faces_padded, textures=textures)
# No elevation or azimuth rotation
R, T = look_at_view_transform(2.7, 0.0, 0.0)
cameras = PerspectiveCameras(device=device, R=R, T=T)
# Init shader settings
materials = Materials(
device=device,
ambient_color=WHITE,
diffuse_color=WHITE,
specular_color=WHITE,
)
lights = AmbientLights(
device=device,
ambient_color=WHITE,
)
lights.location = torch.tensor([0.0, 0.0, +2.0], device=device)[None]
raster_settings = RasterizationSettings(
image_size=512, blur_radius=0.0, faces_per_pixel=1
)
rasterizer = MeshRasterizer(cameras=cameras, raster_settings=raster_settings)
blend_params = BlendParams(
1e-4,
1e-4,
background_color=BLACK[0],
)
# only test HardFlatShader since that's the only one that makes
# sense for classification
shader = HardFlatShader(
lights=lights,
cameras=cameras,
materials=materials,
blend_params=blend_params,
)
renderer = MeshRenderer(rasterizer=rasterizer, shader=shader)
images = renderer(sphere_mesh)
self.assertEqual(images.shape[-1], C + 1)
self.assertClose(images.amax(), torch.tensor(10.0), atol=0.01)
self.assertClose(images.amin(), torch.tensor(0.0), atol=0.01)
# grab last 3 color channels
rgb = (images[0, ..., C - 3 : C] / 10).squeeze().cpu()
filename = "test_nd_sphere.png"
if DEBUG:
debug_filename = "DEBUG_%s" % filename
Image.fromarray((rgb.numpy() * 255).astype(np.uint8)).save(
DATA_DIR / debug_filename
)
image_ref = load_rgb_image(filename, DATA_DIR)
self.assertClose(rgb, image_ref, atol=0.05)