mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 20:02:49 +08:00
fix default settings for point rasterization and update benchmark
Summary: Fixes the default setting of `max_points_per_bin` in `rasterize_points.py`. For large batches with large size pointclouds this was a causing the rasterizer to be very slow. Expanded the pointcloud rendering benchmarks to include larger size pointclouds and fixed cuda synchronization issue in benchmark. Reviewed By: gkioxari Differential Revision: D22301185 fbshipit-source-id: 5077c1ba2c43d73efc1c659f0ec75959ceddf893
This commit is contained in:
parent
b636f2950d
commit
88f579389f
@ -98,7 +98,7 @@ def rasterize_points(
|
|||||||
)
|
)
|
||||||
|
|
||||||
if max_points_per_bin is None:
|
if max_points_per_bin is None:
|
||||||
max_points_per_bin = int(max(10000, points_packed.shape[0] / 5))
|
max_points_per_bin = int(max(10000, pointclouds._P / 5))
|
||||||
|
|
||||||
# Function.apply cannot take keyword args, so we handle defaults in this
|
# Function.apply cannot take keyword args, so we handle defaults in this
|
||||||
# wrapper and call apply with positional args only
|
# wrapper and call apply with positional args only
|
||||||
|
@ -28,10 +28,17 @@ def _bm_cpu_with_init(N, P, img_size=32, radius=0.1, pts_per_pxl=3):
|
|||||||
|
|
||||||
def _bm_cuda_with_init(N, P, img_size=32, radius=0.1, pts_per_pxl=3):
|
def _bm_cuda_with_init(N, P, img_size=32, radius=0.1, pts_per_pxl=3):
|
||||||
torch.manual_seed(231)
|
torch.manual_seed(231)
|
||||||
points = torch.randn(N, P, 3, device=torch.device("cuda"))
|
device = torch.device("cuda:0")
|
||||||
|
points = torch.randn(N, P, 3, device=device)
|
||||||
pointclouds = Pointclouds(points=points)
|
pointclouds = Pointclouds(points=points)
|
||||||
args = (pointclouds, img_size, radius, pts_per_pxl)
|
args = (pointclouds, img_size, radius, pts_per_pxl)
|
||||||
return lambda: rasterize_points(*args)
|
torch.cuda.synchronize(device)
|
||||||
|
|
||||||
|
def fn():
|
||||||
|
rasterize_points(*args)
|
||||||
|
torch.cuda.synchronize(device)
|
||||||
|
|
||||||
|
return fn
|
||||||
|
|
||||||
|
|
||||||
def bm_python_vs_cpu() -> None:
|
def bm_python_vs_cpu() -> None:
|
||||||
@ -46,4 +53,9 @@ def bm_python_vs_cpu() -> None:
|
|||||||
{"N": 4, "P": 1024, "img_size": 128, "radius": 0.05, "pts_per_pxl": 5},
|
{"N": 4, "P": 1024, "img_size": 128, "radius": 0.05, "pts_per_pxl": 5},
|
||||||
]
|
]
|
||||||
benchmark(_bm_cpu_with_init, "RASTERIZE_CPU", kwargs_list, warmup_iters=1)
|
benchmark(_bm_cpu_with_init, "RASTERIZE_CPU", kwargs_list, warmup_iters=1)
|
||||||
|
kwargs_list += [
|
||||||
|
{"N": 32, "P": 10000, "img_size": 128, "radius": 0.01, "pts_per_pxl": 50},
|
||||||
|
{"N": 32, "P": 100000, "img_size": 128, "radius": 0.01, "pts_per_pxl": 50},
|
||||||
|
{"N": 8, "P": 200000, "img_size": 512, "radius": 0.01, "pts_per_pxl": 50},
|
||||||
|
]
|
||||||
benchmark(_bm_cuda_with_init, "RASTERIZE_CUDA", kwargs_list, warmup_iters=1)
|
benchmark(_bm_cuda_with_init, "RASTERIZE_CUDA", kwargs_list, warmup_iters=1)
|
||||||
|
Loading…
x
Reference in New Issue
Block a user