mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-12-19 05:40:34 +08:00
Python marching cubes improvements
Summary: Overhaul of marching_cubes_naive for better performance and to avoid relying on unstable hashing. In particular, instead of hashing vertex positions, we index each interpolated vertex with its corresponding edge in the 3d grid. Reviewed By: kjchalup Differential Revision: D39419642 fbshipit-source-id: b5fede3525c545d1d374198928dfb216262f0ec0
This commit is contained in:
committed by
Facebook GitHub Bot
parent
6471893f59
commit
850efdf706
Binary file not shown.
Binary file not shown.
@@ -32,8 +32,8 @@ class TestCubeConfiguration(TestCaseMixin, unittest.TestCase):
|
||||
volume_data = torch.ones(1, 2, 2, 2) # (B, W, H, D)
|
||||
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False)
|
||||
|
||||
expected_verts = torch.tensor([])
|
||||
expected_faces = torch.tensor([], dtype=torch.int64)
|
||||
expected_verts = torch.tensor([[]])
|
||||
expected_faces = torch.tensor([[]], dtype=torch.int64)
|
||||
self.assertClose(verts, expected_verts)
|
||||
self.assertClose(faces, expected_faces)
|
||||
|
||||
@@ -42,16 +42,15 @@ class TestCubeConfiguration(TestCaseMixin, unittest.TestCase):
|
||||
volume_data[0, 0, 0, 0] = 0
|
||||
volume_data = volume_data.permute(0, 3, 2, 1) # (B, D, H, W)
|
||||
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False)
|
||||
|
||||
expected_verts = torch.tensor(
|
||||
[
|
||||
[0.5, 0, 0],
|
||||
[0, 0, 0.5],
|
||||
[0, 0.5, 0],
|
||||
[0, 0, 0.5],
|
||||
]
|
||||
)
|
||||
|
||||
expected_faces = torch.tensor([[1, 2, 0]])
|
||||
expected_faces = torch.tensor([[0, 1, 2]])
|
||||
self.assertClose(verts[0], expected_verts)
|
||||
self.assertClose(faces[0], expected_faces)
|
||||
|
||||
@@ -69,12 +68,12 @@ class TestCubeConfiguration(TestCaseMixin, unittest.TestCase):
|
||||
expected_verts = torch.tensor(
|
||||
[
|
||||
[1.0000, 0.0000, 0.5000],
|
||||
[0.0000, 0.5000, 0.0000],
|
||||
[0.0000, 0.0000, 0.5000],
|
||||
[1.0000, 0.5000, 0.0000],
|
||||
[0.0000, 0.5000, 0.0000],
|
||||
]
|
||||
)
|
||||
expected_faces = torch.tensor([[1, 2, 0], [3, 2, 1]])
|
||||
expected_faces = torch.tensor([[0, 1, 2], [3, 1, 0]])
|
||||
self.assertClose(verts[0], expected_verts)
|
||||
self.assertClose(faces[0], expected_faces)
|
||||
|
||||
@@ -92,15 +91,15 @@ class TestCubeConfiguration(TestCaseMixin, unittest.TestCase):
|
||||
|
||||
expected_verts = torch.tensor(
|
||||
[
|
||||
[0.5000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.5000],
|
||||
[1.0000, 0.5000, 0.0000],
|
||||
[1.0000, 1.0000, 0.5000],
|
||||
[0.5000, 1.0000, 0.0000],
|
||||
[1.0000, 0.5000, 0.0000],
|
||||
[0.5000, 0.0000, 0.0000],
|
||||
[0.0000, 0.5000, 0.0000],
|
||||
[0.0000, 0.0000, 0.5000],
|
||||
]
|
||||
)
|
||||
expected_faces = torch.tensor([[0, 1, 5], [4, 3, 2]])
|
||||
expected_faces = torch.tensor([[0, 1, 2], [3, 4, 5]])
|
||||
self.assertClose(verts[0], expected_verts)
|
||||
self.assertClose(faces[0], expected_faces)
|
||||
|
||||
@@ -119,14 +118,14 @@ class TestCubeConfiguration(TestCaseMixin, unittest.TestCase):
|
||||
|
||||
expected_verts = torch.tensor(
|
||||
[
|
||||
[0.5000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.5000],
|
||||
[1.0000, 0.5000, 0.0000],
|
||||
[0.5000, 0.0000, 0.0000],
|
||||
[0.0000, 0.5000, 1.0000],
|
||||
[1.0000, 0.5000, 1.0000],
|
||||
[1.0000, 0.5000, 0.0000],
|
||||
]
|
||||
)
|
||||
expected_faces = torch.tensor([[0, 2, 1], [0, 4, 2], [4, 3, 2]])
|
||||
expected_faces = torch.tensor([[0, 1, 2], [0, 3, 1], [3, 4, 1]])
|
||||
self.assertClose(verts[0], expected_verts)
|
||||
self.assertClose(faces[0], expected_faces)
|
||||
|
||||
@@ -143,15 +142,14 @@ class TestCubeConfiguration(TestCaseMixin, unittest.TestCase):
|
||||
|
||||
expected_verts = torch.tensor(
|
||||
[
|
||||
[0.0000, 0.5000, 1.0000],
|
||||
[1.0000, 0.5000, 1.0000],
|
||||
[1.0000, 0.5000, 0.0000],
|
||||
[0.0000, 0.5000, 0.0000],
|
||||
[1.0000, 0.5000, 1.0000],
|
||||
[0.0000, 0.5000, 1.0000],
|
||||
]
|
||||
)
|
||||
|
||||
expected_faces = torch.tensor([[1, 0, 2], [2, 0, 3]])
|
||||
|
||||
expected_faces = torch.tensor([[0, 1, 2], [2, 1, 3]])
|
||||
self.assertClose(verts[0], expected_verts)
|
||||
self.assertClose(faces[0], expected_faces)
|
||||
|
||||
@@ -171,17 +169,17 @@ class TestCubeConfiguration(TestCaseMixin, unittest.TestCase):
|
||||
|
||||
expected_verts = torch.tensor(
|
||||
[
|
||||
[0.5000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.5000],
|
||||
[0.5000, 1.0000, 0.0000],
|
||||
[0.0000, 1.0000, 0.5000],
|
||||
[0.0000, 0.5000, 0.0000],
|
||||
[1.0000, 0.5000, 0.0000],
|
||||
[0.5000, 0.0000, 0.0000],
|
||||
[0.0000, 0.5000, 1.0000],
|
||||
[1.0000, 0.5000, 1.0000],
|
||||
[1.0000, 0.5000, 0.0000],
|
||||
[0.0000, 0.5000, 0.0000],
|
||||
[0.0000, 0.0000, 0.5000],
|
||||
]
|
||||
)
|
||||
expected_faces = torch.tensor([[2, 7, 3], [0, 6, 1], [6, 4, 1], [6, 5, 4]])
|
||||
expected_faces = torch.tensor([[0, 1, 2], [3, 4, 5], [3, 5, 6], [5, 4, 7]])
|
||||
|
||||
self.assertClose(verts[0], expected_verts)
|
||||
self.assertClose(faces[0], expected_faces)
|
||||
@@ -202,22 +200,22 @@ class TestCubeConfiguration(TestCaseMixin, unittest.TestCase):
|
||||
|
||||
expected_verts = torch.tensor(
|
||||
[
|
||||
[0.5000, 0.0000, 1.0000],
|
||||
[1.0000, 0.0000, 0.5000],
|
||||
[0.5000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.5000],
|
||||
[0.5000, 1.0000, 1.0000],
|
||||
[1.0000, 1.0000, 0.5000],
|
||||
[0.5000, 1.0000, 0.0000],
|
||||
[0.0000, 1.0000, 0.5000],
|
||||
[0.0000, 0.5000, 1.0000],
|
||||
[0.0000, 1.0000, 0.5000],
|
||||
[1.0000, 0.0000, 0.5000],
|
||||
[0.5000, 0.0000, 1.0000],
|
||||
[1.0000, 0.5000, 1.0000],
|
||||
[1.0000, 0.5000, 0.0000],
|
||||
[0.5000, 0.0000, 0.0000],
|
||||
[0.0000, 0.5000, 0.0000],
|
||||
[0.0000, 0.0000, 0.5000],
|
||||
[0.5000, 1.0000, 0.0000],
|
||||
[1.0000, 0.5000, 0.0000],
|
||||
[1.0000, 1.0000, 0.5000],
|
||||
]
|
||||
)
|
||||
|
||||
expected_faces = torch.tensor([[0, 1, 9], [4, 7, 8], [2, 3, 11], [5, 10, 6]])
|
||||
expected_faces = torch.tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]])
|
||||
|
||||
self.assertClose(verts[0], expected_verts)
|
||||
self.assertClose(faces[0], expected_faces)
|
||||
@@ -238,15 +236,15 @@ class TestCubeConfiguration(TestCaseMixin, unittest.TestCase):
|
||||
|
||||
expected_verts = torch.tensor(
|
||||
[
|
||||
[1.0000, 0.0000, 0.5000],
|
||||
[0.5000, 0.0000, 0.0000],
|
||||
[0.5000, 1.0000, 1.0000],
|
||||
[0.0000, 1.0000, 0.5000],
|
||||
[1.0000, 0.5000, 1.0000],
|
||||
[0.0000, 1.0000, 0.5000],
|
||||
[0.5000, 1.0000, 1.0000],
|
||||
[1.0000, 0.0000, 0.5000],
|
||||
[0.0000, 0.5000, 0.0000],
|
||||
[0.5000, 0.0000, 0.0000],
|
||||
]
|
||||
)
|
||||
expected_faces = torch.tensor([[2, 3, 5], [4, 2, 5], [4, 5, 1], [4, 1, 0]])
|
||||
expected_faces = torch.tensor([[0, 1, 2], [3, 1, 0], [3, 4, 1], [3, 5, 4]])
|
||||
|
||||
self.assertClose(verts[0], expected_verts)
|
||||
self.assertClose(faces[0], expected_faces)
|
||||
@@ -269,13 +267,13 @@ class TestCubeConfiguration(TestCaseMixin, unittest.TestCase):
|
||||
[
|
||||
[0.5000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.5000],
|
||||
[0.5000, 1.0000, 1.0000],
|
||||
[0.0000, 1.0000, 0.5000],
|
||||
[1.0000, 0.5000, 1.0000],
|
||||
[1.0000, 0.5000, 0.0000],
|
||||
[0.5000, 1.0000, 1.0000],
|
||||
]
|
||||
)
|
||||
expected_faces = torch.tensor([[0, 5, 4], [0, 4, 3], [0, 3, 1], [3, 4, 2]])
|
||||
expected_faces = torch.tensor([[0, 1, 2], [0, 2, 3], [0, 3, 4], [5, 3, 2]])
|
||||
|
||||
self.assertClose(verts[0], expected_verts)
|
||||
self.assertClose(faces[0], expected_faces)
|
||||
@@ -295,15 +293,15 @@ class TestCubeConfiguration(TestCaseMixin, unittest.TestCase):
|
||||
expected_verts = torch.tensor(
|
||||
[
|
||||
[0.5000, 0.0000, 0.0000],
|
||||
[0.0000, 0.5000, 0.0000],
|
||||
[0.0000, 0.0000, 0.5000],
|
||||
[0.5000, 1.0000, 1.0000],
|
||||
[1.0000, 1.0000, 0.5000],
|
||||
[1.0000, 0.5000, 1.0000],
|
||||
[0.0000, 0.5000, 0.0000],
|
||||
[0.5000, 1.0000, 1.0000],
|
||||
]
|
||||
)
|
||||
|
||||
expected_faces = torch.tensor([[4, 3, 2], [0, 1, 5]])
|
||||
expected_faces = torch.tensor([[0, 1, 2], [3, 4, 5]])
|
||||
|
||||
self.assertClose(verts[0], expected_verts)
|
||||
self.assertClose(faces[0], expected_faces)
|
||||
@@ -324,16 +322,16 @@ class TestCubeConfiguration(TestCaseMixin, unittest.TestCase):
|
||||
expected_verts = torch.tensor(
|
||||
[
|
||||
[1.0000, 0.0000, 0.5000],
|
||||
[0.0000, 0.5000, 0.0000],
|
||||
[0.0000, 0.0000, 0.5000],
|
||||
[0.5000, 1.0000, 1.0000],
|
||||
[1.0000, 0.5000, 0.0000],
|
||||
[1.0000, 1.0000, 0.5000],
|
||||
[1.0000, 0.5000, 1.0000],
|
||||
[1.0000, 0.5000, 0.0000],
|
||||
[0.0000, 0.5000, 0.0000],
|
||||
[0.5000, 1.0000, 1.0000],
|
||||
]
|
||||
)
|
||||
|
||||
expected_faces = torch.tensor([[5, 1, 6], [5, 0, 1], [4, 3, 2]])
|
||||
expected_faces = torch.tensor([[0, 1, 2], [0, 3, 1], [4, 5, 6]])
|
||||
|
||||
self.assertClose(verts[0], expected_verts)
|
||||
self.assertClose(faces[0], expected_faces)
|
||||
@@ -354,18 +352,18 @@ class TestCubeConfiguration(TestCaseMixin, unittest.TestCase):
|
||||
expected_verts = torch.tensor(
|
||||
[
|
||||
[1.0000, 0.0000, 0.5000],
|
||||
[1.0000, 0.5000, 0.0000],
|
||||
[0.5000, 0.0000, 0.0000],
|
||||
[0.5000, 1.0000, 1.0000],
|
||||
[1.0000, 1.0000, 0.5000],
|
||||
[1.0000, 0.5000, 1.0000],
|
||||
[0.5000, 1.0000, 1.0000],
|
||||
[0.0000, 0.5000, 0.0000],
|
||||
[0.5000, 1.0000, 0.0000],
|
||||
[0.0000, 1.0000, 0.5000],
|
||||
[1.0000, 0.5000, 1.0000],
|
||||
[1.0000, 0.5000, 0.0000],
|
||||
[0.0000, 0.5000, 0.0000],
|
||||
]
|
||||
)
|
||||
|
||||
expected_faces = torch.tensor([[6, 3, 2], [7, 0, 1], [5, 4, 8]])
|
||||
expected_faces = torch.tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
|
||||
|
||||
self.assertClose(verts[0], expected_verts)
|
||||
self.assertClose(faces[0], expected_faces)
|
||||
@@ -386,18 +384,18 @@ class TestCubeConfiguration(TestCaseMixin, unittest.TestCase):
|
||||
|
||||
expected_verts = torch.tensor(
|
||||
[
|
||||
[0.5000, 0.0000, 1.0000],
|
||||
[1.0000, 0.0000, 0.5000],
|
||||
[0.5000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.5000],
|
||||
[0.5000, 1.0000, 1.0000],
|
||||
[0.5000, 0.0000, 1.0000],
|
||||
[1.0000, 1.0000, 0.5000],
|
||||
[0.5000, 1.0000, 1.0000],
|
||||
[0.0000, 0.0000, 0.5000],
|
||||
[0.5000, 0.0000, 0.0000],
|
||||
[0.5000, 1.0000, 0.0000],
|
||||
[0.0000, 1.0000, 0.5000],
|
||||
]
|
||||
)
|
||||
|
||||
expected_faces = torch.tensor([[3, 6, 2], [3, 7, 6], [1, 5, 0], [5, 4, 0]])
|
||||
expected_faces = torch.tensor([[0, 1, 2], [2, 1, 3], [4, 5, 6], [4, 6, 7]])
|
||||
|
||||
self.assertClose(verts[0], expected_verts)
|
||||
self.assertClose(faces[0], expected_faces)
|
||||
@@ -418,16 +416,16 @@ class TestCubeConfiguration(TestCaseMixin, unittest.TestCase):
|
||||
|
||||
expected_verts = torch.tensor(
|
||||
[
|
||||
[1.0000, 0.0000, 0.5000],
|
||||
[0.5000, 0.0000, 0.0000],
|
||||
[0.5000, 1.0000, 1.0000],
|
||||
[1.0000, 1.0000, 0.5000],
|
||||
[0.0000, 0.5000, 1.0000],
|
||||
[0.0000, 0.5000, 0.0000],
|
||||
[0.0000, 0.5000, 1.0000],
|
||||
[1.0000, 1.0000, 0.5000],
|
||||
[1.0000, 0.0000, 0.5000],
|
||||
[0.5000, 1.0000, 1.0000],
|
||||
]
|
||||
)
|
||||
|
||||
expected_faces = torch.tensor([[1, 0, 3], [1, 3, 4], [1, 4, 5], [2, 4, 3]])
|
||||
expected_faces = torch.tensor([[0, 1, 2], [0, 2, 3], [0, 3, 4], [3, 2, 5]])
|
||||
|
||||
self.assertClose(verts[0], expected_verts)
|
||||
self.assertClose(faces[0], expected_faces)
|
||||
@@ -447,27 +445,26 @@ class TestMarchingCubes(TestCaseMixin, unittest.TestCase):
|
||||
|
||||
expected_verts = torch.tensor(
|
||||
[
|
||||
[0.5, 1, 1],
|
||||
[1, 1, 0.5],
|
||||
[1, 0.5, 1],
|
||||
[1, 1, 1.5],
|
||||
[1, 1.5, 1],
|
||||
[1.5, 1, 1],
|
||||
[1.0000, 0.5000, 1.0000],
|
||||
[1.0000, 1.0000, 0.5000],
|
||||
[0.5000, 1.0000, 1.0000],
|
||||
[1.5000, 1.0000, 1.0000],
|
||||
[1.0000, 1.5000, 1.0000],
|
||||
[1.0000, 1.0000, 1.5000],
|
||||
]
|
||||
)
|
||||
expected_faces = torch.tensor(
|
||||
[
|
||||
[2, 0, 1],
|
||||
[2, 3, 0],
|
||||
[0, 4, 1],
|
||||
[3, 4, 0],
|
||||
[5, 2, 1],
|
||||
[3, 2, 5],
|
||||
[5, 1, 4],
|
||||
[0, 1, 2],
|
||||
[1, 0, 3],
|
||||
[1, 4, 2],
|
||||
[1, 3, 4],
|
||||
[0, 2, 5],
|
||||
[3, 0, 5],
|
||||
[2, 4, 5],
|
||||
[3, 5, 4],
|
||||
]
|
||||
)
|
||||
|
||||
self.assertClose(verts[0], expected_verts)
|
||||
self.assertClose(faces[0], expected_faces)
|
||||
|
||||
@@ -492,76 +489,76 @@ class TestMarchingCubes(TestCaseMixin, unittest.TestCase):
|
||||
|
||||
expected_verts = torch.tensor(
|
||||
[
|
||||
[0.9000, 1.0000, 1.0000],
|
||||
[1.0000, 1.0000, 0.9000],
|
||||
[1.0000, 0.9000, 1.0000],
|
||||
[0.9000, 1.0000, 2.0000],
|
||||
[1.0000, 0.9000, 2.0000],
|
||||
[1.0000, 1.0000, 2.1000],
|
||||
[0.9000, 2.0000, 1.0000],
|
||||
[1.0000, 2.0000, 0.9000],
|
||||
[0.9000, 2.0000, 2.0000],
|
||||
[1.0000, 2.0000, 2.1000],
|
||||
[1.0000, 2.1000, 1.0000],
|
||||
[1.0000, 2.1000, 2.0000],
|
||||
[2.0000, 1.0000, 0.9000],
|
||||
[1.0000, 1.0000, 0.9000],
|
||||
[0.9000, 1.0000, 1.0000],
|
||||
[2.0000, 0.9000, 1.0000],
|
||||
[2.0000, 0.9000, 2.0000],
|
||||
[2.0000, 1.0000, 2.1000],
|
||||
[2.0000, 2.0000, 0.9000],
|
||||
[2.0000, 2.0000, 2.1000],
|
||||
[2.0000, 2.1000, 1.0000],
|
||||
[2.0000, 2.1000, 2.0000],
|
||||
[2.0000, 1.0000, 0.9000],
|
||||
[2.1000, 1.0000, 1.0000],
|
||||
[2.1000, 1.0000, 2.0000],
|
||||
[1.0000, 2.0000, 0.9000],
|
||||
[0.9000, 2.0000, 1.0000],
|
||||
[2.0000, 2.0000, 0.9000],
|
||||
[2.1000, 2.0000, 1.0000],
|
||||
[1.0000, 2.1000, 1.0000],
|
||||
[2.0000, 2.1000, 1.0000],
|
||||
[1.0000, 0.9000, 2.0000],
|
||||
[0.9000, 1.0000, 2.0000],
|
||||
[2.0000, 0.9000, 2.0000],
|
||||
[2.1000, 1.0000, 2.0000],
|
||||
[0.9000, 2.0000, 2.0000],
|
||||
[2.1000, 2.0000, 2.0000],
|
||||
[1.0000, 2.1000, 2.0000],
|
||||
[2.0000, 2.1000, 2.0000],
|
||||
[1.0000, 1.0000, 2.1000],
|
||||
[2.0000, 1.0000, 2.1000],
|
||||
[1.0000, 2.0000, 2.1000],
|
||||
[2.0000, 2.0000, 2.1000],
|
||||
]
|
||||
)
|
||||
|
||||
expected_faces = torch.tensor(
|
||||
[
|
||||
[2, 0, 1],
|
||||
[2, 4, 3],
|
||||
[0, 2, 3],
|
||||
[4, 5, 3],
|
||||
[0, 6, 7],
|
||||
[1, 0, 7],
|
||||
[3, 8, 0],
|
||||
[8, 6, 0],
|
||||
[5, 9, 8],
|
||||
[3, 5, 8],
|
||||
[0, 1, 2],
|
||||
[0, 3, 4],
|
||||
[1, 0, 4],
|
||||
[4, 3, 5],
|
||||
[1, 6, 7],
|
||||
[2, 1, 7],
|
||||
[4, 8, 1],
|
||||
[1, 8, 6],
|
||||
[8, 4, 5],
|
||||
[9, 8, 5],
|
||||
[6, 10, 7],
|
||||
[11, 10, 6],
|
||||
[8, 11, 6],
|
||||
[9, 11, 8],
|
||||
[13, 2, 1],
|
||||
[12, 13, 1],
|
||||
[14, 4, 13],
|
||||
[13, 4, 2],
|
||||
[4, 14, 15],
|
||||
[5, 4, 15],
|
||||
[12, 1, 16],
|
||||
[1, 7, 16],
|
||||
[15, 17, 5],
|
||||
[5, 17, 9],
|
||||
[16, 7, 10],
|
||||
[18, 16, 10],
|
||||
[19, 18, 11],
|
||||
[18, 10, 11],
|
||||
[6, 8, 11],
|
||||
[10, 6, 11],
|
||||
[8, 9, 11],
|
||||
[12, 0, 2],
|
||||
[13, 12, 2],
|
||||
[3, 0, 14],
|
||||
[14, 0, 12],
|
||||
[15, 5, 3],
|
||||
[14, 15, 3],
|
||||
[2, 7, 13],
|
||||
[7, 16, 13],
|
||||
[5, 15, 9],
|
||||
[9, 15, 17],
|
||||
[10, 18, 16],
|
||||
[7, 10, 16],
|
||||
[11, 19, 10],
|
||||
[19, 18, 10],
|
||||
[9, 17, 19],
|
||||
[11, 9, 19],
|
||||
[20, 13, 12],
|
||||
[20, 21, 14],
|
||||
[13, 20, 14],
|
||||
[12, 13, 20],
|
||||
[14, 12, 20],
|
||||
[21, 14, 20],
|
||||
[15, 14, 21],
|
||||
[22, 20, 12],
|
||||
[16, 22, 12],
|
||||
[13, 16, 22],
|
||||
[20, 13, 22],
|
||||
[21, 20, 23],
|
||||
[23, 20, 22],
|
||||
[20, 22, 23],
|
||||
[17, 15, 21],
|
||||
[23, 17, 21],
|
||||
[22, 16, 18],
|
||||
[16, 18, 22],
|
||||
[23, 22, 18],
|
||||
[19, 23, 18],
|
||||
[17, 23, 19],
|
||||
@@ -569,6 +566,7 @@ class TestMarchingCubes(TestCaseMixin, unittest.TestCase):
|
||||
)
|
||||
self.assertClose(verts[0], expected_verts)
|
||||
self.assertClose(faces[0], expected_faces)
|
||||
|
||||
verts, faces = marching_cubes_naive(volume_data, 0.9, return_local_coords=True)
|
||||
expected_verts = convert_to_local(expected_verts, 5)
|
||||
self.assertClose(verts[0], expected_verts)
|
||||
@@ -592,34 +590,49 @@ class TestMarchingCubes(TestCaseMixin, unittest.TestCase):
|
||||
|
||||
expected_verts = torch.tensor(
|
||||
[
|
||||
[2.0, 1.0, 1.0],
|
||||
[2.0, 2.0, 1.0],
|
||||
[1.0, 1.0, 1.0],
|
||||
[1.0, 1.0, 2.0],
|
||||
[1.0, 2.0, 1.0],
|
||||
[2.0, 1.0, 1.0],
|
||||
[1.0, 1.0, 1.0],
|
||||
[2.0, 1.0, 2.0],
|
||||
[1.0, 1.0, 2.0],
|
||||
[1.0, 1.0, 1.0],
|
||||
[1.0, 2.0, 1.0],
|
||||
[1.0, 1.0, 2.0],
|
||||
[1.0, 2.0, 2.0],
|
||||
[2.0, 1.0, 1.0],
|
||||
[2.0, 1.0, 2.0],
|
||||
[2.0, 2.0, 1.0],
|
||||
[2.0, 2.0, 2.0],
|
||||
[2.0, 2.0, 1.0],
|
||||
[2.0, 2.0, 2.0],
|
||||
[1.0, 2.0, 1.0],
|
||||
[1.0, 2.0, 2.0],
|
||||
[2.0, 1.0, 2.0],
|
||||
[1.0, 1.0, 2.0],
|
||||
[2.0, 2.0, 2.0],
|
||||
[1.0, 2.0, 2.0],
|
||||
]
|
||||
)
|
||||
|
||||
expected_faces = torch.tensor(
|
||||
[
|
||||
[1, 3, 0],
|
||||
[3, 2, 0],
|
||||
[5, 1, 4],
|
||||
[4, 1, 0],
|
||||
[4, 0, 6],
|
||||
[0, 2, 6],
|
||||
[5, 7, 1],
|
||||
[1, 7, 3],
|
||||
[7, 6, 3],
|
||||
[6, 2, 3],
|
||||
[5, 4, 7],
|
||||
[7, 4, 6],
|
||||
[0, 1, 2],
|
||||
[2, 1, 3],
|
||||
[4, 5, 6],
|
||||
[6, 5, 7],
|
||||
[8, 9, 10],
|
||||
[9, 11, 10],
|
||||
[12, 13, 14],
|
||||
[14, 13, 15],
|
||||
[16, 17, 18],
|
||||
[17, 19, 18],
|
||||
[20, 21, 22],
|
||||
[21, 23, 22],
|
||||
]
|
||||
)
|
||||
|
||||
self.assertClose(verts[0], expected_verts)
|
||||
self.assertClose(faces[0], expected_faces)
|
||||
|
||||
@@ -651,8 +664,8 @@ class TestMarchingCubes(TestCaseMixin, unittest.TestCase):
|
||||
filename = os.path.join(DATA_DIR, data_filename)
|
||||
with open(filename, "rb") as file:
|
||||
verts_and_faces = pickle.load(file)
|
||||
expected_verts = verts_and_faces["verts"].squeeze()
|
||||
expected_faces = verts_and_faces["faces"].squeeze()
|
||||
expected_verts = verts_and_faces["verts"]
|
||||
expected_faces = verts_and_faces["faces"]
|
||||
|
||||
self.assertClose(verts[0], expected_verts)
|
||||
self.assertClose(faces[0], expected_faces)
|
||||
@@ -689,8 +702,8 @@ class TestMarchingCubes(TestCaseMixin, unittest.TestCase):
|
||||
expected_verts = verts_and_faces["verts"]
|
||||
expected_faces = verts_and_faces["faces"]
|
||||
|
||||
self.assertClose(verts[0], expected_verts[0])
|
||||
self.assertClose(faces[0], expected_faces[0])
|
||||
self.assertClose(verts[0], expected_verts)
|
||||
self.assertClose(faces[0], expected_faces)
|
||||
|
||||
def test_cube_surface_area(self):
|
||||
if USE_SCIKIT:
|
||||
@@ -760,16 +773,26 @@ class TestMarchingCubes(TestCaseMixin, unittest.TestCase):
|
||||
|
||||
self.assertClose(surf, surf_sci)
|
||||
|
||||
def test_ball_example(self):
|
||||
N = 15
|
||||
axis_tensor = torch.arange(0, N)
|
||||
X, Y, Z = torch.meshgrid(axis_tensor, axis_tensor, axis_tensor, indexing="ij")
|
||||
u = (X - 15) ** 2 + (Y - 15) ** 2 + (Z - 15) ** 2 - 8**2
|
||||
u = u[None].float()
|
||||
verts, faces = marching_cubes_naive(u, 0, return_local_coords=False)
|
||||
|
||||
@staticmethod
|
||||
def marching_cubes_with_init(batch_size: int, V: int):
|
||||
def marching_cubes_with_init(algo_type: str, batch_size: int, V: int):
|
||||
device = torch.device("cuda:0")
|
||||
volume_data = torch.rand(
|
||||
(batch_size, V, V, V), dtype=torch.float32, device=device
|
||||
)
|
||||
torch.cuda.synchronize()
|
||||
algo_table = {
|
||||
"naive": marching_cubes_naive,
|
||||
}
|
||||
|
||||
def convert():
|
||||
marching_cubes_naive(volume_data, return_local_coords=False)
|
||||
algo_table[algo_type](volume_data, return_local_coords=False)
|
||||
torch.cuda.synchronize()
|
||||
|
||||
return convert
|
||||
|
||||
Reference in New Issue
Block a user