mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 03:42:50 +08:00
SplatterPhongShader Benchmarks
Summary: Benchmarking. We only use num_faces=2 for splatter, because as far as I can see one would never need to use more. Pose optimization and mesh optimization experiments (see next two diffs) showed that Splatter with 2 faces beats Softmax with 50 and 100 faces in terms of accuracy. Results: We're slower at 64px^2. At 128px and 256px, we're slower than Softmax+50faces, but faster than Softmax+100faces. We're also slower at 10 faces/pix, but expectation as well as results show that more then 2 faces shouldn't be necessary. See also more results in .https://fburl.com/gdoc/ttv7u7hp Reviewed By: jcjohnson Differential Revision: D36210575 fbshipit-source-id: c8de28c8a59ce5fe21a47263bd43d2757b15d123
This commit is contained in:
parent
c5a83f46ef
commit
7c25d34d22
@ -16,7 +16,7 @@ def bm_blending() -> None:
|
||||
kwargs_list = []
|
||||
num_meshes = [8]
|
||||
image_size = [64, 128, 256]
|
||||
faces_per_pixel = [50, 100]
|
||||
faces_per_pixel = [2, 50, 100]
|
||||
backend = ["pytorch", "custom"]
|
||||
test_cases = product(num_meshes, image_size, faces_per_pixel, devices, backend)
|
||||
|
||||
@ -47,6 +47,28 @@ def bm_blending() -> None:
|
||||
warmup_iters=1,
|
||||
)
|
||||
|
||||
kwargs_list = []
|
||||
faces_per_pixel = [2, 10]
|
||||
backend = ["pytorch"]
|
||||
test_cases = product(num_meshes, image_size, faces_per_pixel, devices, backend)
|
||||
for case in test_cases:
|
||||
n, s, k, d, b = case
|
||||
kwargs_list.append(
|
||||
{
|
||||
"num_meshes": n,
|
||||
"image_size": s,
|
||||
"faces_per_pixel": k,
|
||||
"device": d,
|
||||
"backend": b,
|
||||
}
|
||||
)
|
||||
benchmark(
|
||||
TestBlending.bm_splatter_blending,
|
||||
"SPLATTER_BLENDING_PYTORCH",
|
||||
kwargs_list,
|
||||
warmup_iters=1,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
bm_blending()
|
||||
|
@ -14,7 +14,9 @@ from pytorch3d.renderer.blending import (
|
||||
sigmoid_alpha_blend,
|
||||
softmax_rgb_blend,
|
||||
)
|
||||
from pytorch3d.renderer.cameras import FoVPerspectiveCameras
|
||||
from pytorch3d.renderer.mesh.rasterizer import Fragments
|
||||
from pytorch3d.renderer.splatter_blend import SplatterBlender
|
||||
|
||||
|
||||
def sigmoid_blend_naive_loop(colors, fragments, blend_params):
|
||||
@ -412,6 +414,54 @@ class TestBlending(TestCaseMixin, unittest.TestCase):
|
||||
|
||||
return fn
|
||||
|
||||
@staticmethod
|
||||
def bm_splatter_blending(
|
||||
num_meshes: int = 16,
|
||||
image_size: int = 128,
|
||||
faces_per_pixel: int = 2,
|
||||
use_jit: bool = False,
|
||||
device: str = "cpu",
|
||||
backend: str = "pytorch",
|
||||
):
|
||||
if torch.cuda.is_available() and "cuda:" in device:
|
||||
# If a device other than the default is used, set the device explicity.
|
||||
torch.cuda.set_device(device)
|
||||
|
||||
device = torch.device(device)
|
||||
torch.manual_seed(231)
|
||||
|
||||
# Create dummy outputs of rasterization
|
||||
N, S, K = num_meshes, image_size, faces_per_pixel
|
||||
F = 32 # num faces in the mesh
|
||||
|
||||
pixel_coords_camera = torch.randn(
|
||||
(N, S, S, K, 3), device=device, requires_grad=True
|
||||
)
|
||||
cameras = FoVPerspectiveCameras(device=device)
|
||||
colors = torch.randn((N, S, S, K, 3), device=device)
|
||||
background_mask = torch.randint(
|
||||
low=-1, high=F + 1, size=(N, S, S, K), device=device
|
||||
)
|
||||
background_mask = torch.full((N, S, S, K), False, dtype=bool, device=device)
|
||||
blend_params = BlendParams(sigma=0.5)
|
||||
|
||||
torch.cuda.synchronize()
|
||||
splatter_blender = SplatterBlender((N, S, S, K), colors.device)
|
||||
|
||||
def fn():
|
||||
# test forward and backward pass
|
||||
images = splatter_blender(
|
||||
colors,
|
||||
pixel_coords_camera,
|
||||
cameras,
|
||||
background_mask,
|
||||
blend_params,
|
||||
)
|
||||
images.sum().backward()
|
||||
torch.cuda.synchronize()
|
||||
|
||||
return fn
|
||||
|
||||
def test_blend_params(self):
|
||||
"""Test color parameter of BlendParams().
|
||||
Assert passed value overrides default value.
|
||||
|
Loading…
x
Reference in New Issue
Block a user