SplatterPhongShader Benchmarks

Summary:
Benchmarking. We only use num_faces=2 for splatter, because as far as I can see one would never need to use more. Pose optimization and mesh optimization experiments (see next two diffs) showed that Splatter with 2 faces beats Softmax with 50 and 100 faces in terms of accuracy.

Results: We're slower at 64px^2. At 128px and 256px, we're slower than Softmax+50faces, but faster than Softmax+100faces. We're also slower at 10 faces/pix, but expectation as well as results show that more then 2 faces shouldn't be necessary. See also more results in .https://fburl.com/gdoc/ttv7u7hp

Reviewed By: jcjohnson

Differential Revision: D36210575

fbshipit-source-id: c8de28c8a59ce5fe21a47263bd43d2757b15d123
This commit is contained in:
Krzysztof Chalupka 2022-05-24 22:31:12 -07:00 committed by Facebook GitHub Bot
parent c5a83f46ef
commit 7c25d34d22
2 changed files with 73 additions and 1 deletions

View File

@ -16,7 +16,7 @@ def bm_blending() -> None:
kwargs_list = []
num_meshes = [8]
image_size = [64, 128, 256]
faces_per_pixel = [50, 100]
faces_per_pixel = [2, 50, 100]
backend = ["pytorch", "custom"]
test_cases = product(num_meshes, image_size, faces_per_pixel, devices, backend)
@ -47,6 +47,28 @@ def bm_blending() -> None:
warmup_iters=1,
)
kwargs_list = []
faces_per_pixel = [2, 10]
backend = ["pytorch"]
test_cases = product(num_meshes, image_size, faces_per_pixel, devices, backend)
for case in test_cases:
n, s, k, d, b = case
kwargs_list.append(
{
"num_meshes": n,
"image_size": s,
"faces_per_pixel": k,
"device": d,
"backend": b,
}
)
benchmark(
TestBlending.bm_splatter_blending,
"SPLATTER_BLENDING_PYTORCH",
kwargs_list,
warmup_iters=1,
)
if __name__ == "__main__":
bm_blending()

View File

@ -14,7 +14,9 @@ from pytorch3d.renderer.blending import (
sigmoid_alpha_blend,
softmax_rgb_blend,
)
from pytorch3d.renderer.cameras import FoVPerspectiveCameras
from pytorch3d.renderer.mesh.rasterizer import Fragments
from pytorch3d.renderer.splatter_blend import SplatterBlender
def sigmoid_blend_naive_loop(colors, fragments, blend_params):
@ -412,6 +414,54 @@ class TestBlending(TestCaseMixin, unittest.TestCase):
return fn
@staticmethod
def bm_splatter_blending(
num_meshes: int = 16,
image_size: int = 128,
faces_per_pixel: int = 2,
use_jit: bool = False,
device: str = "cpu",
backend: str = "pytorch",
):
if torch.cuda.is_available() and "cuda:" in device:
# If a device other than the default is used, set the device explicity.
torch.cuda.set_device(device)
device = torch.device(device)
torch.manual_seed(231)
# Create dummy outputs of rasterization
N, S, K = num_meshes, image_size, faces_per_pixel
F = 32 # num faces in the mesh
pixel_coords_camera = torch.randn(
(N, S, S, K, 3), device=device, requires_grad=True
)
cameras = FoVPerspectiveCameras(device=device)
colors = torch.randn((N, S, S, K, 3), device=device)
background_mask = torch.randint(
low=-1, high=F + 1, size=(N, S, S, K), device=device
)
background_mask = torch.full((N, S, S, K), False, dtype=bool, device=device)
blend_params = BlendParams(sigma=0.5)
torch.cuda.synchronize()
splatter_blender = SplatterBlender((N, S, S, K), colors.device)
def fn():
# test forward and backward pass
images = splatter_blender(
colors,
pixel_coords_camera,
cameras,
background_mask,
blend_params,
)
images.sum().backward()
torch.cuda.synchronize()
return fn
def test_blend_params(self):
"""Test color parameter of BlendParams().
Assert passed value overrides default value.