dataset_map_provider

Summary: replace dataset_zoo with a pluggable DatasetMapProvider. The logic is now in annotated_file_dataset_map_provider.

Reviewed By: shapovalov

Differential Revision: D36443965

fbshipit-source-id: 9087649802810055e150b2fbfcc3c197a761f28a
This commit is contained in:
Jeremy Reizenstein
2022-05-20 07:50:30 -07:00
committed by Facebook GitHub Bot
parent 69c6d06ed8
commit 79c61a2d86
15 changed files with 305 additions and 175 deletions

View File

@@ -66,7 +66,7 @@ If you have a custom `experiment.py` script (as in the Option 2 above), replace
To run training, pass a yaml config file, followed by a list of overridden arguments.
For example, to train NeRF on the first skateboard sequence from CO3D dataset, you can run:
```shell
dataset_args=data_source_args.dataset_args
dataset_args=data_source_args.dataset_map_provider_JsonIndexDatasetMapProvider_args
pytorch3d_implicitron_runner --config-path ./configs/ --config-name repro_singleseq_nerf $dataset_args.dataset_root=<DATASET_ROOT> $dataset_args.category='skateboard' $dataset_args.test_restrict_sequence_id=0 test_when_finished=True exp_dir=<CHECKPOINT_DIR>
```
@@ -85,7 +85,7 @@ To run evaluation on the latest checkpoint after (or during) training, simply ad
E.g. for executing the evaluation on the NeRF skateboard sequence, you can run:
```shell
dataset_args=data_source_args.dataset_args
dataset_args=data_source_args.dataset_map_provider_JsonIndexDatasetMapProvider_args
pytorch3d_implicitron_runner --config-path ./configs/ --config-name repro_singleseq_nerf $dataset_args.dataset_root=<CO3D_DATASET_ROOT> $dataset_args.category='skateboard' $dataset_args.test_restrict_sequence_id=0 exp_dir=<CHECKPOINT_DIR> eval_only=True
```
Evaluation prints the metrics to `stdout` and dumps them to a json file in `exp_dir`.
@@ -236,7 +236,7 @@ generic_model_args: GenericModel
╘== ReductionFeatureAggregator
solver_args: init_optimizer
data_source_args: ImplicitronDataSource
└-- dataset_args
└-- dataset_map_provider_*_args
└-- dataloader_args
```