mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-12-21 14:50:36 +08:00
Elementwise decoder
Summary: Tensorf does relu or softmax after the density grid. This diff adds the ability to replicate that. Reviewed By: bottler Differential Revision: D40023228 fbshipit-source-id: 9f19868cd68460af98ab6e61c7f708158c26dc08
This commit is contained in:
committed by
Facebook GitHub Bot
parent
a607dd063e
commit
76cddd90be
@@ -54,15 +54,43 @@ class DecoderFunctionBase(ReplaceableBase, torch.nn.Module):
|
||||
|
||||
|
||||
@registry.register
|
||||
class IdentityDecoder(DecoderFunctionBase):
|
||||
class ElementwiseDecoder(DecoderFunctionBase):
|
||||
"""
|
||||
Decoding function which returns its input.
|
||||
Decoding function which scales the input, adds shift and then applies
|
||||
`relu`, `softplus`, `sigmoid` or nothing on its input:
|
||||
`result = operation(input * scale + shift)`
|
||||
|
||||
Members:
|
||||
scale: a scalar with which input is multiplied before being shifted.
|
||||
Defaults to 1.
|
||||
shift: a scalar which is added to the scaled input before performing
|
||||
the operation. Defaults to 0.
|
||||
operation: which operation to perform on the transformed input. Options are:
|
||||
`relu`, `softplus`, `sigmoid` and `identity`. Defaults to `identity`.
|
||||
"""
|
||||
|
||||
scale: float = 1
|
||||
shift: float = 0
|
||||
operation: str = "identity"
|
||||
|
||||
def __post_init__(self):
|
||||
super().__post_init__()
|
||||
if self.operation not in ["relu", "softplus", "sigmoid", "identity"]:
|
||||
raise ValueError(
|
||||
"`operation` can only be `relu`, `softplus`, `sigmoid` or identity."
|
||||
)
|
||||
|
||||
def forward(
|
||||
self, features: torch.Tensor, z: Optional[torch.Tensor] = None
|
||||
) -> torch.Tensor:
|
||||
return features
|
||||
transfomed_input = features * self.scale + self.shift
|
||||
if self.operation == "softplus":
|
||||
return torch.nn.functional.softplus(transfomed_input)
|
||||
if self.operation == "relu":
|
||||
return torch.nn.functional.relu(transfomed_input)
|
||||
if self.operation == "sigmoid":
|
||||
return torch.nn.functional.sigmoid(transfomed_input)
|
||||
return transfomed_input
|
||||
|
||||
|
||||
class MLPWithInputSkips(Configurable, torch.nn.Module):
|
||||
|
||||
Reference in New Issue
Block a user