Add OpenCV camera conversion; fix bug for camera unified PyTorch3D interface.

Summary: This commit adds a new camera conversion function for OpenCV style parameters to Pulsar parameters to the library. Using this function it addresses a bug reported here: https://fb.workplace.com/groups/629644647557365/posts/1079637302558095, by using the PyTorch3D->OpenCV->Pulsar chain instead of the original direct conversion function. Both conversions are well-tested and an additional test for the full chain has been added, resulting in a more reliable solution requiring less code.

Reviewed By: patricklabatut

Differential Revision: D29322106

fbshipit-source-id: 13df13c2e48f628f75d9f44f19ff7f1646fb7ebd
This commit is contained in:
Christoph Lassner 2021-07-10 01:05:36 -07:00 committed by Facebook GitHub Bot
parent fef5bcd8f9
commit 75432a0695
8 changed files with 275 additions and 32 deletions

View File

@ -11,7 +11,7 @@ from typing import Any, Dict, Optional, Tuple, Union
import torch
import torch.nn as nn
from ....transforms import matrix_to_rotation_6d
from ....utils import pulsar_from_cameras_projection
from ...cameras import (
FoVOrthographicCameras,
FoVPerspectiveCameras,
@ -102,7 +102,7 @@ class PulsarPointsRenderer(nn.Module):
height=height,
max_num_balls=max_num_spheres,
orthogonal_projection=orthogonal_projection,
right_handed_system=True,
right_handed_system=False,
n_channels=n_channels,
**kwargs,
)
@ -359,24 +359,28 @@ class PulsarPointsRenderer(nn.Module):
def _extract_extrinsics(
self, kwargs, cloud_idx
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Extract the extrinsic information from the kwargs for a specific point cloud.
Instead of implementing a direct translation from the PyTorch3D to the Pulsar
camera model, we chain the two conversions of PyTorch3D->OpenCV and
OpenCV->Pulsar for better maintainability (PyTorch3D->OpenCV is maintained and
tested by the core PyTorch3D team, whereas OpenCV->Pulsar is maintained and
tested by the Pulsar team).
"""
# Shorthand:
cameras = self.rasterizer.cameras
R = kwargs.get("R", cameras.R)[cloud_idx]
T = kwargs.get("T", cameras.T)[cloud_idx]
norm_mat = torch.tensor(
[[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, -1.0]],
dtype=torch.float32,
device=R.device,
tmp_cams = PerspectiveCameras(
R=R.unsqueeze(0), T=T.unsqueeze(0), device=R.device
)
cam_rot = torch.matmul(norm_mat, R[:3, :3][None, ...]).permute((0, 2, 1))
norm_mat = torch.tensor(
[[-1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]],
dtype=torch.float32,
device=R.device,
size_tensor = torch.tensor(
[[self.renderer._renderer.height, self.renderer._renderer.width]]
)
cam_rot = torch.matmul(norm_mat, cam_rot)
cam_pos = torch.flatten(torch.matmul(cam_rot, T[..., None]))
cam_rot = torch.flatten(matrix_to_rotation_6d(cam_rot))
pulsar_cam = pulsar_from_cameras_projection(tmp_cams, size_tensor)
cam_pos = pulsar_cam[0, :3]
cam_rot = pulsar_cam[0, 3:9]
return cam_pos, cam_rot
def _get_vert_rad(
@ -547,15 +551,17 @@ class PulsarPointsRenderer(nn.Module):
otherargs["bg_col"] = bg_col
# Go!
images.append(
self.renderer(
vert_pos=vert_pos,
vert_col=vert_col,
vert_rad=vert_rad,
cam_params=cam_params,
gamma=gamma,
max_depth=zfar,
min_depth=znear,
**otherargs,
torch.flipud(
self.renderer(
vert_pos=vert_pos,
vert_col=vert_col,
vert_rad=vert_rad,
cam_params=cam_params,
gamma=gamma,
max_depth=zfar,
min_depth=znear,
**otherargs,
)
)
)
return torch.stack(images, dim=0)

View File

@ -7,6 +7,8 @@
from .camera_conversions import (
cameras_from_opencv_projection,
opencv_from_cameras_projection,
pulsar_from_opencv_projection,
pulsar_from_cameras_projection,
)
from .ico_sphere import ico_sphere
from .torus import torus

View File

@ -4,12 +4,16 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import logging
from typing import Tuple
import torch
from ..renderer import PerspectiveCameras
from ..transforms import so3_exp_map, so3_log_map
from ..transforms import matrix_to_rotation_6d
LOGGER = logging.getLogger(__name__)
def cameras_from_opencv_projection(
@ -54,7 +58,6 @@ def cameras_from_opencv_projection(
Returns:
cameras_pytorch3d: A batch of `N` cameras in the PyTorch3D convention.
"""
focal_length = torch.stack([camera_matrix[:, 0, 0], camera_matrix[:, 1, 1]], dim=-1)
principal_point = camera_matrix[:, :2, 2]
@ -68,7 +71,7 @@ def cameras_from_opencv_projection(
# For R, T we flip x, y axes (opencv screen space has an opposite
# orientation of screen axes).
# We also transpose R (opencv multiplies points from the opposite=left side).
R_pytorch3d = R.permute(0, 2, 1)
R_pytorch3d = R.clone().permute(0, 2, 1)
T_pytorch3d = tvec.clone()
R_pytorch3d[:, :, :2] *= -1
T_pytorch3d[:, :2] *= -1
@ -103,20 +106,22 @@ def opencv_from_cameras_projection(
cameras: A batch of `N` cameras in the PyTorch3D convention.
image_size: A tensor of shape `(N, 2)` containing the sizes of the images
(height, width) attached to each camera.
return_as_rotmat (bool): If set to True, return the full 3x3 rotation
matrices. Otherwise, return an axis-angle vector (default).
Returns:
R: A batch of rotation matrices of shape `(N, 3, 3)`.
tvec: A batch of translation vectors of shape `(N, 3)`.
camera_matrix: A batch of camera calibration matrices of shape `(N, 3, 3)`.
"""
R_pytorch3d = cameras.R
T_pytorch3d = cameras.T
R_pytorch3d = cameras.R.clone() # pyre-ignore
T_pytorch3d = cameras.T.clone() # pyre-ignore
focal_pytorch3d = cameras.focal_length
p0_pytorch3d = cameras.principal_point
T_pytorch3d[:, :2] *= -1 # pyre-ignore
R_pytorch3d[:, :, :2] *= -1 # pyre-ignore
tvec = T_pytorch3d.clone() # pyre-ignore
R = R_pytorch3d.permute(0, 2, 1) # pyre-ignore
T_pytorch3d[:, :2] *= -1
R_pytorch3d[:, :, :2] *= -1
tvec = T_pytorch3d
R = R_pytorch3d.permute(0, 2, 1)
# Retype the image_size correctly and flip to width, height.
image_size_wh = image_size.to(R).flip(dims=(1,))
@ -130,3 +135,151 @@ def opencv_from_cameras_projection(
camera_matrix[:, 0, 0] = focal_length[:, 0]
camera_matrix[:, 1, 1] = focal_length[:, 1]
return R, tvec, camera_matrix
def pulsar_from_opencv_projection(
R: torch.Tensor,
tvec: torch.Tensor,
camera_matrix: torch.Tensor,
image_size: torch.Tensor,
znear: float = 0.1,
) -> torch.Tensor:
"""
Convert OpenCV style camera parameters to Pulsar style camera parameters.
Note:
* Pulsar does NOT support different focal lengths for x and y.
For conversion, we use the average of fx and fy.
* The Pulsar renderer MUST use a left-handed coordinate system for this
mapping to work.
* The resulting image will be vertically flipped - which has to be
addressed AFTER rendering by the user.
* The parameters `R, tvec, camera_matrix` correspond to the outputs
of `cv2.decomposeProjectionMatrix`.
Args:
R: A batch of rotation matrices of shape `(N, 3, 3)`.
tvec: A batch of translation vectors of shape `(N, 3)`.
camera_matrix: A batch of camera calibration matrices of shape `(N, 3, 3)`.
image_size: A tensor of shape `(N, 2)` containing the sizes of the images
(height, width) attached to each camera.
znear (float): The near clipping value to use for Pulsar.
Returns:
cameras_pulsar: A batch of `N` Pulsar camera vectors in the Pulsar
convention `(N, 13)` (3 translation, 6 rotation, focal_length, sensor_width,
c_x, c_y).
"""
assert len(camera_matrix.size()) == 3, "This function requires batched inputs!"
assert len(R.size()) == 3, "This function requires batched inputs!"
assert len(tvec.size()) in (2, 3), "This function reuqires batched inputs!"
# Validate parameters.
image_size_wh = image_size.to(R).flip(dims=(1,))
assert torch.all(
image_size_wh > 0
), "height and width must be positive but min is: %s" % (
str(image_size_wh.min().item())
)
assert (
camera_matrix.size(1) == 3 and camera_matrix.size(2) == 3
), "Incorrect camera matrix shape: expected 3x3 but got %dx%d" % (
camera_matrix.size(1),
camera_matrix.size(2),
)
assert (
R.size(1) == 3 and R.size(2) == 3
), "Incorrect R shape: expected 3x3 but got %dx%d" % (
R.size(1),
R.size(2),
)
if len(tvec.size()) == 2:
tvec = tvec.unsqueeze(2)
assert (
tvec.size(1) == 3 and tvec.size(2) == 1
), "Incorrect tvec shape: expected 3x1 but got %dx%d" % (
tvec.size(1),
tvec.size(2),
)
# Check batch size.
batch_size = camera_matrix.size(0)
assert R.size(0) == batch_size, "Expected R to have batch size %d. Has size %d." % (
batch_size,
R.size(0),
)
assert (
tvec.size(0) == batch_size
), "Expected tvec to have batch size %d. Has size %d." % (
batch_size,
tvec.size(0),
)
# Check image sizes.
image_w = image_size_wh[0, 0]
image_h = image_size_wh[0, 1]
assert torch.all(
image_size_wh[:, 0] == image_w
), "All images in a batch must have the same width!"
assert torch.all(
image_size_wh[:, 1] == image_h
), "All images in a batch must have the same height!"
# Focal length.
fx = camera_matrix[:, 0, 0].unsqueeze(1)
fy = camera_matrix[:, 1, 1].unsqueeze(1)
# Check that we introduce less than 1% error by averaging the focal lengths.
fx_y = fx / fy
if torch.any(fx_y > 1.01) or torch.any(fx_y < 0.99):
LOGGER.warning(
"Pulsar only supports a single focal lengths. For converting OpenCV "
"focal lengths, we average them for x and y directions. "
"The focal lengths for x and y you provided differ by more than 1%, "
"which means this could introduce a noticeable error."
)
f = (fx + fy) / 2
# Normalize f into normalized device coordinates.
focal_length_px = f / image_w
# Transfer into focal_length and sensor_width.
focal_length = torch.tensor([znear - 1e-5], dtype=torch.float32, device=R.device)
focal_length = focal_length[None, :].repeat(batch_size, 1)
sensor_width = focal_length / focal_length_px
# Principal point.
cx = camera_matrix[:, 0, 2].unsqueeze(1)
cy = camera_matrix[:, 1, 2].unsqueeze(1)
# Transfer principal point offset into centered offset.
cx = -(cx - image_w / 2)
cy = cy - image_h / 2
# Concatenate to final vector.
param = torch.cat([focal_length, sensor_width, cx, cy], dim=1)
R_trans = R.permute(0, 2, 1)
cam_pos = -torch.bmm(R_trans, tvec).squeeze(2)
cam_rot = matrix_to_rotation_6d(R_trans)
cam_params = torch.cat([cam_pos, cam_rot, param], dim=1)
return cam_params
def pulsar_from_cameras_projection(
cameras: PerspectiveCameras,
image_size: torch.Tensor,
) -> torch.Tensor:
"""
Convert PyTorch3D `PerspectiveCameras` to Pulsar style camera parameters.
Note:
* Pulsar does NOT support different focal lengths for x and y.
For conversion, we use the average of fx and fy.
* The Pulsar renderer MUST use a left-handed coordinate system for this
mapping to work.
* The resulting image will be vertically flipped - which has to be
addressed AFTER rendering by the user.
Args:
cameras: A batch of `N` cameras in the PyTorch3D convention.
image_size: A tensor of shape `(N, 2)` containing the sizes of the images
(height, width) attached to each camera.
Returns:
cameras_pulsar: A batch of `N` Pulsar camera vectors in the Pulsar
convention `(N, 13)` (3 translation, 6 rotation, focal_length, sensor_width,
c_x, c_y).
"""
opencv_R, opencv_T, opencv_K = opencv_from_cameras_projection(cameras, image_size)
return pulsar_from_opencv_projection(opencv_R, opencv_T, opencv_K, image_size)

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.9 KiB

After

Width:  |  Height:  |  Size: 1.9 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.9 KiB

After

Width:  |  Height:  |  Size: 1.9 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.1 KiB

After

Width:  |  Height:  |  Size: 2.1 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.1 KiB

After

Width:  |  Height:  |  Size: 2.1 KiB

View File

@ -12,10 +12,12 @@ import numpy as np
import torch
from common_testing import TestCaseMixin, get_tests_dir
from pytorch3d.ops import eyes
from pytorch3d.renderer.points.pulsar import Renderer as PulsarRenderer
from pytorch3d.transforms import so3_exp_map, so3_log_map
from pytorch3d.utils import (
cameras_from_opencv_projection,
opencv_from_cameras_projection,
pulsar_from_opencv_projection,
)
@ -111,6 +113,9 @@ class TestCameraConversions(TestCaseMixin, unittest.TestCase):
[105.0, 105.0],
[120.0, 120.0],
]
# These values are in y, x format, but they should be in x, y format.
# The tests work like this because they only test for consistency,
# but this format is misleading.
principal_point = [
[240, 320],
[240.5, 320.3],
@ -160,3 +165,80 @@ class TestCameraConversions(TestCaseMixin, unittest.TestCase):
self.assertClose(R, R_i)
self.assertClose(tvec, tvec_i)
self.assertClose(camera_matrix, camera_matrix_i)
def test_pulsar_conversion(self):
"""
Tests that the cameras converted from opencv to pulsar convention
return correct projections of random 3D points. The check is done
against a set of results precomputed using `cv2.projectPoints` function.
"""
image_size = [[480, 640]]
R = [
[
[1.0, 0.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 0.0, 1.0],
],
[
[0.1968, -0.6663, -0.7192],
[0.7138, -0.4055, 0.5710],
[-0.6721, -0.6258, 0.3959],
],
]
tvec = [
[10.0, 10.0, 3.0],
[-0.0, -0.0, 20.0],
]
focal_length = [
[100.0, 100.0],
[10.0, 10.0],
]
principal_point = [
[320, 240],
[320, 240],
]
principal_point, focal_length, R, tvec, image_size = [
torch.FloatTensor(x)
for x in (principal_point, focal_length, R, tvec, image_size)
]
camera_matrix = eyes(dim=3, N=2)
camera_matrix[:, 0, 0] = focal_length[:, 0]
camera_matrix[:, 1, 1] = focal_length[:, 1]
camera_matrix[:, :2, 2] = principal_point
rvec = so3_log_map(R)
pts = torch.tensor(
[[[0.0, 0.0, 120.0]], [[0.0, 0.0, 120.0]]], dtype=torch.float32
)
radii = torch.tensor([[1e-5], [1e-5]], dtype=torch.float32)
col = torch.zeros((2, 1, 1), dtype=torch.float32)
# project the 3D points with the opencv projection function
pts_proj_opencv = cv2_project_points(pts, rvec, tvec, camera_matrix)
pulsar_cam = pulsar_from_opencv_projection(
R, tvec, camera_matrix, image_size, znear=100.0
)
pulsar_rend = PulsarRenderer(
640, 480, 1, right_handed_system=False, n_channels=1
)
rendered = torch.flip(
pulsar_rend(
pts,
col,
radii,
pulsar_cam,
1e-5,
max_depth=150.0,
min_depth=100.0,
),
dims=(1,),
)
for batch_id in range(2):
point_pos = torch.where(rendered[batch_id] == rendered[batch_id].min())
point_pos = point_pos[1][0], point_pos[0][0]
self.assertLess(
torch.abs(point_pos[0] - pts_proj_opencv[batch_id, 0, 0]), 2
)
self.assertLess(
torch.abs(point_pos[1] - pts_proj_opencv[batch_id, 0, 1]), 2
)