Add OpenCV camera conversion; fix bug for camera unified PyTorch3D interface.
Summary: This commit adds a new camera conversion function for OpenCV style parameters to Pulsar parameters to the library. Using this function it addresses a bug reported here: https://fb.workplace.com/groups/629644647557365/posts/1079637302558095, by using the PyTorch3D->OpenCV->Pulsar chain instead of the original direct conversion function. Both conversions are well-tested and an additional test for the full chain has been added, resulting in a more reliable solution requiring less code. Reviewed By: patricklabatut Differential Revision: D29322106 fbshipit-source-id: 13df13c2e48f628f75d9f44f19ff7f1646fb7ebd
@ -11,7 +11,7 @@ from typing import Any, Dict, Optional, Tuple, Union
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from ....transforms import matrix_to_rotation_6d
|
||||
from ....utils import pulsar_from_cameras_projection
|
||||
from ...cameras import (
|
||||
FoVOrthographicCameras,
|
||||
FoVPerspectiveCameras,
|
||||
@ -102,7 +102,7 @@ class PulsarPointsRenderer(nn.Module):
|
||||
height=height,
|
||||
max_num_balls=max_num_spheres,
|
||||
orthogonal_projection=orthogonal_projection,
|
||||
right_handed_system=True,
|
||||
right_handed_system=False,
|
||||
n_channels=n_channels,
|
||||
**kwargs,
|
||||
)
|
||||
@ -359,24 +359,28 @@ class PulsarPointsRenderer(nn.Module):
|
||||
def _extract_extrinsics(
|
||||
self, kwargs, cloud_idx
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Extract the extrinsic information from the kwargs for a specific point cloud.
|
||||
|
||||
Instead of implementing a direct translation from the PyTorch3D to the Pulsar
|
||||
camera model, we chain the two conversions of PyTorch3D->OpenCV and
|
||||
OpenCV->Pulsar for better maintainability (PyTorch3D->OpenCV is maintained and
|
||||
tested by the core PyTorch3D team, whereas OpenCV->Pulsar is maintained and
|
||||
tested by the Pulsar team).
|
||||
"""
|
||||
# Shorthand:
|
||||
cameras = self.rasterizer.cameras
|
||||
R = kwargs.get("R", cameras.R)[cloud_idx]
|
||||
T = kwargs.get("T", cameras.T)[cloud_idx]
|
||||
norm_mat = torch.tensor(
|
||||
[[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, -1.0]],
|
||||
dtype=torch.float32,
|
||||
device=R.device,
|
||||
tmp_cams = PerspectiveCameras(
|
||||
R=R.unsqueeze(0), T=T.unsqueeze(0), device=R.device
|
||||
)
|
||||
cam_rot = torch.matmul(norm_mat, R[:3, :3][None, ...]).permute((0, 2, 1))
|
||||
norm_mat = torch.tensor(
|
||||
[[-1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]],
|
||||
dtype=torch.float32,
|
||||
device=R.device,
|
||||
size_tensor = torch.tensor(
|
||||
[[self.renderer._renderer.height, self.renderer._renderer.width]]
|
||||
)
|
||||
cam_rot = torch.matmul(norm_mat, cam_rot)
|
||||
cam_pos = torch.flatten(torch.matmul(cam_rot, T[..., None]))
|
||||
cam_rot = torch.flatten(matrix_to_rotation_6d(cam_rot))
|
||||
pulsar_cam = pulsar_from_cameras_projection(tmp_cams, size_tensor)
|
||||
cam_pos = pulsar_cam[0, :3]
|
||||
cam_rot = pulsar_cam[0, 3:9]
|
||||
return cam_pos, cam_rot
|
||||
|
||||
def _get_vert_rad(
|
||||
@ -547,15 +551,17 @@ class PulsarPointsRenderer(nn.Module):
|
||||
otherargs["bg_col"] = bg_col
|
||||
# Go!
|
||||
images.append(
|
||||
self.renderer(
|
||||
vert_pos=vert_pos,
|
||||
vert_col=vert_col,
|
||||
vert_rad=vert_rad,
|
||||
cam_params=cam_params,
|
||||
gamma=gamma,
|
||||
max_depth=zfar,
|
||||
min_depth=znear,
|
||||
**otherargs,
|
||||
torch.flipud(
|
||||
self.renderer(
|
||||
vert_pos=vert_pos,
|
||||
vert_col=vert_col,
|
||||
vert_rad=vert_rad,
|
||||
cam_params=cam_params,
|
||||
gamma=gamma,
|
||||
max_depth=zfar,
|
||||
min_depth=znear,
|
||||
**otherargs,
|
||||
)
|
||||
)
|
||||
)
|
||||
return torch.stack(images, dim=0)
|
||||
|
@ -7,6 +7,8 @@
|
||||
from .camera_conversions import (
|
||||
cameras_from_opencv_projection,
|
||||
opencv_from_cameras_projection,
|
||||
pulsar_from_opencv_projection,
|
||||
pulsar_from_cameras_projection,
|
||||
)
|
||||
from .ico_sphere import ico_sphere
|
||||
from .torus import torus
|
||||
|
@ -4,12 +4,16 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
import logging
|
||||
from typing import Tuple
|
||||
|
||||
import torch
|
||||
|
||||
from ..renderer import PerspectiveCameras
|
||||
from ..transforms import so3_exp_map, so3_log_map
|
||||
from ..transforms import matrix_to_rotation_6d
|
||||
|
||||
|
||||
LOGGER = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def cameras_from_opencv_projection(
|
||||
@ -54,7 +58,6 @@ def cameras_from_opencv_projection(
|
||||
Returns:
|
||||
cameras_pytorch3d: A batch of `N` cameras in the PyTorch3D convention.
|
||||
"""
|
||||
|
||||
focal_length = torch.stack([camera_matrix[:, 0, 0], camera_matrix[:, 1, 1]], dim=-1)
|
||||
principal_point = camera_matrix[:, :2, 2]
|
||||
|
||||
@ -68,7 +71,7 @@ def cameras_from_opencv_projection(
|
||||
# For R, T we flip x, y axes (opencv screen space has an opposite
|
||||
# orientation of screen axes).
|
||||
# We also transpose R (opencv multiplies points from the opposite=left side).
|
||||
R_pytorch3d = R.permute(0, 2, 1)
|
||||
R_pytorch3d = R.clone().permute(0, 2, 1)
|
||||
T_pytorch3d = tvec.clone()
|
||||
R_pytorch3d[:, :, :2] *= -1
|
||||
T_pytorch3d[:, :2] *= -1
|
||||
@ -103,20 +106,22 @@ def opencv_from_cameras_projection(
|
||||
cameras: A batch of `N` cameras in the PyTorch3D convention.
|
||||
image_size: A tensor of shape `(N, 2)` containing the sizes of the images
|
||||
(height, width) attached to each camera.
|
||||
return_as_rotmat (bool): If set to True, return the full 3x3 rotation
|
||||
matrices. Otherwise, return an axis-angle vector (default).
|
||||
|
||||
Returns:
|
||||
R: A batch of rotation matrices of shape `(N, 3, 3)`.
|
||||
tvec: A batch of translation vectors of shape `(N, 3)`.
|
||||
camera_matrix: A batch of camera calibration matrices of shape `(N, 3, 3)`.
|
||||
"""
|
||||
R_pytorch3d = cameras.R
|
||||
T_pytorch3d = cameras.T
|
||||
R_pytorch3d = cameras.R.clone() # pyre-ignore
|
||||
T_pytorch3d = cameras.T.clone() # pyre-ignore
|
||||
focal_pytorch3d = cameras.focal_length
|
||||
p0_pytorch3d = cameras.principal_point
|
||||
T_pytorch3d[:, :2] *= -1 # pyre-ignore
|
||||
R_pytorch3d[:, :, :2] *= -1 # pyre-ignore
|
||||
tvec = T_pytorch3d.clone() # pyre-ignore
|
||||
R = R_pytorch3d.permute(0, 2, 1) # pyre-ignore
|
||||
T_pytorch3d[:, :2] *= -1
|
||||
R_pytorch3d[:, :, :2] *= -1
|
||||
tvec = T_pytorch3d
|
||||
R = R_pytorch3d.permute(0, 2, 1)
|
||||
|
||||
# Retype the image_size correctly and flip to width, height.
|
||||
image_size_wh = image_size.to(R).flip(dims=(1,))
|
||||
@ -130,3 +135,151 @@ def opencv_from_cameras_projection(
|
||||
camera_matrix[:, 0, 0] = focal_length[:, 0]
|
||||
camera_matrix[:, 1, 1] = focal_length[:, 1]
|
||||
return R, tvec, camera_matrix
|
||||
|
||||
|
||||
def pulsar_from_opencv_projection(
|
||||
R: torch.Tensor,
|
||||
tvec: torch.Tensor,
|
||||
camera_matrix: torch.Tensor,
|
||||
image_size: torch.Tensor,
|
||||
znear: float = 0.1,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Convert OpenCV style camera parameters to Pulsar style camera parameters.
|
||||
|
||||
Note:
|
||||
* Pulsar does NOT support different focal lengths for x and y.
|
||||
For conversion, we use the average of fx and fy.
|
||||
* The Pulsar renderer MUST use a left-handed coordinate system for this
|
||||
mapping to work.
|
||||
* The resulting image will be vertically flipped - which has to be
|
||||
addressed AFTER rendering by the user.
|
||||
* The parameters `R, tvec, camera_matrix` correspond to the outputs
|
||||
of `cv2.decomposeProjectionMatrix`.
|
||||
|
||||
Args:
|
||||
R: A batch of rotation matrices of shape `(N, 3, 3)`.
|
||||
tvec: A batch of translation vectors of shape `(N, 3)`.
|
||||
camera_matrix: A batch of camera calibration matrices of shape `(N, 3, 3)`.
|
||||
image_size: A tensor of shape `(N, 2)` containing the sizes of the images
|
||||
(height, width) attached to each camera.
|
||||
znear (float): The near clipping value to use for Pulsar.
|
||||
|
||||
Returns:
|
||||
cameras_pulsar: A batch of `N` Pulsar camera vectors in the Pulsar
|
||||
convention `(N, 13)` (3 translation, 6 rotation, focal_length, sensor_width,
|
||||
c_x, c_y).
|
||||
"""
|
||||
assert len(camera_matrix.size()) == 3, "This function requires batched inputs!"
|
||||
assert len(R.size()) == 3, "This function requires batched inputs!"
|
||||
assert len(tvec.size()) in (2, 3), "This function reuqires batched inputs!"
|
||||
|
||||
# Validate parameters.
|
||||
image_size_wh = image_size.to(R).flip(dims=(1,))
|
||||
assert torch.all(
|
||||
image_size_wh > 0
|
||||
), "height and width must be positive but min is: %s" % (
|
||||
str(image_size_wh.min().item())
|
||||
)
|
||||
assert (
|
||||
camera_matrix.size(1) == 3 and camera_matrix.size(2) == 3
|
||||
), "Incorrect camera matrix shape: expected 3x3 but got %dx%d" % (
|
||||
camera_matrix.size(1),
|
||||
camera_matrix.size(2),
|
||||
)
|
||||
assert (
|
||||
R.size(1) == 3 and R.size(2) == 3
|
||||
), "Incorrect R shape: expected 3x3 but got %dx%d" % (
|
||||
R.size(1),
|
||||
R.size(2),
|
||||
)
|
||||
if len(tvec.size()) == 2:
|
||||
tvec = tvec.unsqueeze(2)
|
||||
assert (
|
||||
tvec.size(1) == 3 and tvec.size(2) == 1
|
||||
), "Incorrect tvec shape: expected 3x1 but got %dx%d" % (
|
||||
tvec.size(1),
|
||||
tvec.size(2),
|
||||
)
|
||||
# Check batch size.
|
||||
batch_size = camera_matrix.size(0)
|
||||
assert R.size(0) == batch_size, "Expected R to have batch size %d. Has size %d." % (
|
||||
batch_size,
|
||||
R.size(0),
|
||||
)
|
||||
assert (
|
||||
tvec.size(0) == batch_size
|
||||
), "Expected tvec to have batch size %d. Has size %d." % (
|
||||
batch_size,
|
||||
tvec.size(0),
|
||||
)
|
||||
# Check image sizes.
|
||||
image_w = image_size_wh[0, 0]
|
||||
image_h = image_size_wh[0, 1]
|
||||
assert torch.all(
|
||||
image_size_wh[:, 0] == image_w
|
||||
), "All images in a batch must have the same width!"
|
||||
assert torch.all(
|
||||
image_size_wh[:, 1] == image_h
|
||||
), "All images in a batch must have the same height!"
|
||||
# Focal length.
|
||||
fx = camera_matrix[:, 0, 0].unsqueeze(1)
|
||||
fy = camera_matrix[:, 1, 1].unsqueeze(1)
|
||||
# Check that we introduce less than 1% error by averaging the focal lengths.
|
||||
fx_y = fx / fy
|
||||
if torch.any(fx_y > 1.01) or torch.any(fx_y < 0.99):
|
||||
LOGGER.warning(
|
||||
"Pulsar only supports a single focal lengths. For converting OpenCV "
|
||||
"focal lengths, we average them for x and y directions. "
|
||||
"The focal lengths for x and y you provided differ by more than 1%, "
|
||||
"which means this could introduce a noticeable error."
|
||||
)
|
||||
f = (fx + fy) / 2
|
||||
# Normalize f into normalized device coordinates.
|
||||
focal_length_px = f / image_w
|
||||
# Transfer into focal_length and sensor_width.
|
||||
focal_length = torch.tensor([znear - 1e-5], dtype=torch.float32, device=R.device)
|
||||
focal_length = focal_length[None, :].repeat(batch_size, 1)
|
||||
sensor_width = focal_length / focal_length_px
|
||||
# Principal point.
|
||||
cx = camera_matrix[:, 0, 2].unsqueeze(1)
|
||||
cy = camera_matrix[:, 1, 2].unsqueeze(1)
|
||||
# Transfer principal point offset into centered offset.
|
||||
cx = -(cx - image_w / 2)
|
||||
cy = cy - image_h / 2
|
||||
# Concatenate to final vector.
|
||||
param = torch.cat([focal_length, sensor_width, cx, cy], dim=1)
|
||||
R_trans = R.permute(0, 2, 1)
|
||||
cam_pos = -torch.bmm(R_trans, tvec).squeeze(2)
|
||||
cam_rot = matrix_to_rotation_6d(R_trans)
|
||||
cam_params = torch.cat([cam_pos, cam_rot, param], dim=1)
|
||||
return cam_params
|
||||
|
||||
|
||||
def pulsar_from_cameras_projection(
|
||||
cameras: PerspectiveCameras,
|
||||
image_size: torch.Tensor,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Convert PyTorch3D `PerspectiveCameras` to Pulsar style camera parameters.
|
||||
|
||||
Note:
|
||||
* Pulsar does NOT support different focal lengths for x and y.
|
||||
For conversion, we use the average of fx and fy.
|
||||
* The Pulsar renderer MUST use a left-handed coordinate system for this
|
||||
mapping to work.
|
||||
* The resulting image will be vertically flipped - which has to be
|
||||
addressed AFTER rendering by the user.
|
||||
|
||||
Args:
|
||||
cameras: A batch of `N` cameras in the PyTorch3D convention.
|
||||
image_size: A tensor of shape `(N, 2)` containing the sizes of the images
|
||||
(height, width) attached to each camera.
|
||||
|
||||
Returns:
|
||||
cameras_pulsar: A batch of `N` Pulsar camera vectors in the Pulsar
|
||||
convention `(N, 13)` (3 translation, 6 rotation, focal_length, sensor_width,
|
||||
c_x, c_y).
|
||||
"""
|
||||
opencv_R, opencv_T, opencv_K = opencv_from_cameras_projection(cameras, image_size)
|
||||
return pulsar_from_opencv_projection(opencv_R, opencv_T, opencv_K, image_size)
|
||||
|
Before Width: | Height: | Size: 1.9 KiB After Width: | Height: | Size: 1.9 KiB |
Before Width: | Height: | Size: 1.9 KiB After Width: | Height: | Size: 1.9 KiB |
Before Width: | Height: | Size: 2.1 KiB After Width: | Height: | Size: 2.1 KiB |
Before Width: | Height: | Size: 2.1 KiB After Width: | Height: | Size: 2.1 KiB |
@ -12,10 +12,12 @@ import numpy as np
|
||||
import torch
|
||||
from common_testing import TestCaseMixin, get_tests_dir
|
||||
from pytorch3d.ops import eyes
|
||||
from pytorch3d.renderer.points.pulsar import Renderer as PulsarRenderer
|
||||
from pytorch3d.transforms import so3_exp_map, so3_log_map
|
||||
from pytorch3d.utils import (
|
||||
cameras_from_opencv_projection,
|
||||
opencv_from_cameras_projection,
|
||||
pulsar_from_opencv_projection,
|
||||
)
|
||||
|
||||
|
||||
@ -111,6 +113,9 @@ class TestCameraConversions(TestCaseMixin, unittest.TestCase):
|
||||
[105.0, 105.0],
|
||||
[120.0, 120.0],
|
||||
]
|
||||
# These values are in y, x format, but they should be in x, y format.
|
||||
# The tests work like this because they only test for consistency,
|
||||
# but this format is misleading.
|
||||
principal_point = [
|
||||
[240, 320],
|
||||
[240.5, 320.3],
|
||||
@ -160,3 +165,80 @@ class TestCameraConversions(TestCaseMixin, unittest.TestCase):
|
||||
self.assertClose(R, R_i)
|
||||
self.assertClose(tvec, tvec_i)
|
||||
self.assertClose(camera_matrix, camera_matrix_i)
|
||||
|
||||
def test_pulsar_conversion(self):
|
||||
"""
|
||||
Tests that the cameras converted from opencv to pulsar convention
|
||||
return correct projections of random 3D points. The check is done
|
||||
against a set of results precomputed using `cv2.projectPoints` function.
|
||||
"""
|
||||
image_size = [[480, 640]]
|
||||
R = [
|
||||
[
|
||||
[1.0, 0.0, 0.0],
|
||||
[0.0, 1.0, 0.0],
|
||||
[0.0, 0.0, 1.0],
|
||||
],
|
||||
[
|
||||
[0.1968, -0.6663, -0.7192],
|
||||
[0.7138, -0.4055, 0.5710],
|
||||
[-0.6721, -0.6258, 0.3959],
|
||||
],
|
||||
]
|
||||
tvec = [
|
||||
[10.0, 10.0, 3.0],
|
||||
[-0.0, -0.0, 20.0],
|
||||
]
|
||||
focal_length = [
|
||||
[100.0, 100.0],
|
||||
[10.0, 10.0],
|
||||
]
|
||||
principal_point = [
|
||||
[320, 240],
|
||||
[320, 240],
|
||||
]
|
||||
|
||||
principal_point, focal_length, R, tvec, image_size = [
|
||||
torch.FloatTensor(x)
|
||||
for x in (principal_point, focal_length, R, tvec, image_size)
|
||||
]
|
||||
camera_matrix = eyes(dim=3, N=2)
|
||||
camera_matrix[:, 0, 0] = focal_length[:, 0]
|
||||
camera_matrix[:, 1, 1] = focal_length[:, 1]
|
||||
camera_matrix[:, :2, 2] = principal_point
|
||||
rvec = so3_log_map(R)
|
||||
pts = torch.tensor(
|
||||
[[[0.0, 0.0, 120.0]], [[0.0, 0.0, 120.0]]], dtype=torch.float32
|
||||
)
|
||||
radii = torch.tensor([[1e-5], [1e-5]], dtype=torch.float32)
|
||||
col = torch.zeros((2, 1, 1), dtype=torch.float32)
|
||||
|
||||
# project the 3D points with the opencv projection function
|
||||
pts_proj_opencv = cv2_project_points(pts, rvec, tvec, camera_matrix)
|
||||
pulsar_cam = pulsar_from_opencv_projection(
|
||||
R, tvec, camera_matrix, image_size, znear=100.0
|
||||
)
|
||||
pulsar_rend = PulsarRenderer(
|
||||
640, 480, 1, right_handed_system=False, n_channels=1
|
||||
)
|
||||
rendered = torch.flip(
|
||||
pulsar_rend(
|
||||
pts,
|
||||
col,
|
||||
radii,
|
||||
pulsar_cam,
|
||||
1e-5,
|
||||
max_depth=150.0,
|
||||
min_depth=100.0,
|
||||
),
|
||||
dims=(1,),
|
||||
)
|
||||
for batch_id in range(2):
|
||||
point_pos = torch.where(rendered[batch_id] == rendered[batch_id].min())
|
||||
point_pos = point_pos[1][0], point_pos[0][0]
|
||||
self.assertLess(
|
||||
torch.abs(point_pos[0] - pts_proj_opencv[batch_id, 0, 0]), 2
|
||||
)
|
||||
self.assertLess(
|
||||
torch.abs(point_pos[1] - pts_proj_opencv[batch_id, 0, 1]), 2
|
||||
)
|
||||
|