mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-12-19 05:40:34 +08:00
Fix returning a proper rotation in levelling; supporting batches and default centroid
Summary: `get_rotation_to_best_fit_xy` is useful to expose externally, however there was a bug (which we probably did not care about for our use case): it could return a rotation matrix with det(R) == −1. The diff fixes that, and also makes centroid optional (it can be computed from points). Reviewed By: bottler Differential Revision: D39926791 fbshipit-source-id: 5120c7892815b829f3ddcc23e93d4a5ec0ca0013
This commit is contained in:
committed by
Facebook GitHub Bot
parent
de98c9cc2f
commit
74bbd6fd76
@@ -12,8 +12,9 @@ from pytorch3d.implicitron.tools.circle_fitting import (
|
||||
_signed_area,
|
||||
fit_circle_in_2d,
|
||||
fit_circle_in_3d,
|
||||
get_rotation_to_best_fit_xy,
|
||||
)
|
||||
from pytorch3d.transforms import random_rotation
|
||||
from pytorch3d.transforms import random_rotation, random_rotations
|
||||
from tests.common_testing import TestCaseMixin
|
||||
|
||||
|
||||
@@ -28,6 +29,32 @@ class TestCircleFitting(TestCaseMixin, unittest.TestCase):
|
||||
"""
|
||||
self.assertClose(torch.cross(a, b, dim=-1), torch.zeros_like(a), **kwargs)
|
||||
|
||||
def test_plane_levelling(self):
|
||||
device = torch.device("cuda:0")
|
||||
B = 16
|
||||
N = 1024
|
||||
random = torch.randn((B, N, 3), device=device)
|
||||
|
||||
# first, check that we always return a vaild rotation
|
||||
rot = get_rotation_to_best_fit_xy(random)
|
||||
self.assertClose(rot.det(), torch.ones_like(rot[:, 0, 0]))
|
||||
self.assertClose(rot.norm(dim=-1), torch.ones_like(rot[:, 0]))
|
||||
|
||||
# then, check the result is what we expect
|
||||
z_squeeze = 0.1
|
||||
random[..., -1] *= z_squeeze
|
||||
rot_gt = random_rotations(B, device=device)
|
||||
rotated = random @ rot_gt.transpose(-1, -2)
|
||||
rot_hat = get_rotation_to_best_fit_xy(rotated)
|
||||
self.assertClose(rot.det(), torch.ones_like(rot[:, 0, 0]))
|
||||
self.assertClose(rot.norm(dim=-1), torch.ones_like(rot[:, 0]))
|
||||
# covariance matrix of the levelled points is by design diag(1, 1, z_squeeze²)
|
||||
self.assertClose(
|
||||
(rotated @ rot_hat)[..., -1].std(dim=-1),
|
||||
torch.ones_like(rot_hat[:, 0, 0]) * z_squeeze,
|
||||
rtol=0.1,
|
||||
)
|
||||
|
||||
def test_simple_3d(self):
|
||||
device = torch.device("cuda:0")
|
||||
for _ in range(7):
|
||||
|
||||
Reference in New Issue
Block a user