mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-12-22 23:30:35 +08:00
data_source
Summary: Move dataset_args and dataloader_args from ExperimentConfig into a new member called datasource so that it can contain replaceables. Also add enum Task for task type. Reviewed By: shapovalov Differential Revision: D36201719 fbshipit-source-id: 47d6967bfea3b7b146b6bbd1572e0457c9365871
This commit is contained in:
committed by
Facebook GitHub Bot
parent
9ec9d057cc
commit
73dc109dba
@@ -64,8 +64,9 @@ import tqdm
|
||||
from omegaconf import DictConfig, OmegaConf
|
||||
from packaging import version
|
||||
from pytorch3d.implicitron.dataset import utils as ds_utils
|
||||
from pytorch3d.implicitron.dataset.dataloader_zoo import dataloader_zoo, Dataloaders
|
||||
from pytorch3d.implicitron.dataset.dataset_zoo import dataset_zoo, Datasets
|
||||
from pytorch3d.implicitron.dataset.data_source import ImplicitronDataSource, Task
|
||||
from pytorch3d.implicitron.dataset.dataloader_zoo import Dataloaders
|
||||
from pytorch3d.implicitron.dataset.dataset_zoo import Datasets
|
||||
from pytorch3d.implicitron.dataset.implicitron_dataset import (
|
||||
FrameData,
|
||||
ImplicitronDataset,
|
||||
@@ -428,7 +429,7 @@ def trainvalidate(
|
||||
optimizer.step()
|
||||
|
||||
|
||||
def run_training(cfg: DictConfig, device: str = "cpu"):
|
||||
def run_training(cfg: DictConfig, device: str = "cpu") -> None:
|
||||
"""
|
||||
Entry point to run the training and validation loops
|
||||
based on the specified config file.
|
||||
@@ -452,8 +453,9 @@ def run_training(cfg: DictConfig, device: str = "cpu"):
|
||||
warnings.warn("Cant dump config due to insufficient permissions!")
|
||||
|
||||
# setup datasets
|
||||
datasets = dataset_zoo(**cfg.dataset_args)
|
||||
dataloaders = dataloader_zoo(datasets, **cfg.dataloader_args)
|
||||
datasource = ImplicitronDataSource(**cfg.data_source_args)
|
||||
datasets, dataloaders = datasource.get_datasets_and_dataloaders()
|
||||
task = datasource.get_task()
|
||||
|
||||
# init the model
|
||||
model, stats, optimizer_state = init_model(cfg)
|
||||
@@ -464,7 +466,7 @@ def run_training(cfg: DictConfig, device: str = "cpu"):
|
||||
|
||||
# only run evaluation on the test dataloader
|
||||
if cfg.eval_only:
|
||||
_eval_and_dump(cfg, datasets, dataloaders, model, stats, device=device)
|
||||
_eval_and_dump(cfg, task, datasets, dataloaders, model, stats, device=device)
|
||||
return
|
||||
|
||||
# init the optimizer
|
||||
@@ -526,7 +528,7 @@ def run_training(cfg: DictConfig, device: str = "cpu"):
|
||||
and cfg.test_interval > 0
|
||||
and epoch % cfg.test_interval == 0
|
||||
):
|
||||
run_eval(cfg, model, stats, dataloaders.test, device=device)
|
||||
_run_eval(model, stats, dataloaders.test, task, device=device)
|
||||
|
||||
assert stats.epoch == epoch, "inconsistent stats!"
|
||||
|
||||
@@ -546,11 +548,17 @@ def run_training(cfg: DictConfig, device: str = "cpu"):
|
||||
logger.info(f"LR change! {cur_lr} -> {new_lr}")
|
||||
|
||||
if cfg.test_when_finished:
|
||||
_eval_and_dump(cfg, datasets, dataloaders, model, stats, device=device)
|
||||
_eval_and_dump(cfg, task, datasets, dataloaders, model, stats, device=device)
|
||||
|
||||
|
||||
def _eval_and_dump(
|
||||
cfg, datasets: Datasets, dataloaders: Dataloaders, model, stats, device
|
||||
cfg,
|
||||
task: Task,
|
||||
datasets: Datasets,
|
||||
dataloaders: Dataloaders,
|
||||
model,
|
||||
stats,
|
||||
device,
|
||||
) -> None:
|
||||
"""
|
||||
Run the evaluation loop with the test data loader and
|
||||
@@ -562,16 +570,13 @@ def _eval_and_dump(
|
||||
if dataloader is None:
|
||||
raise ValueError('Dataloaders have to contain the "test" entry for eval!')
|
||||
|
||||
eval_task = cfg.dataset_args["dataset_name"].split("_")[-1]
|
||||
if eval_task == "singlesequence":
|
||||
if task == Task.SINGLE_SEQUENCE:
|
||||
if datasets.train is None:
|
||||
raise ValueError("train dataset must be provided")
|
||||
all_source_cameras = _get_all_source_cameras(datasets.train)
|
||||
else:
|
||||
all_source_cameras = None
|
||||
results = run_eval(
|
||||
cfg, model, all_source_cameras, dataloader, eval_task, device=device
|
||||
)
|
||||
results = _run_eval(model, all_source_cameras, dataloader, task, device=device)
|
||||
|
||||
# add the evaluation epoch to the results
|
||||
for r in results:
|
||||
@@ -598,7 +603,7 @@ def _get_eval_frame_data(frame_data):
|
||||
return frame_data_for_eval
|
||||
|
||||
|
||||
def run_eval(cfg, model, all_source_cameras, loader, task, device):
|
||||
def _run_eval(model, all_source_cameras, loader, task: Task, device):
|
||||
"""
|
||||
Run the evaluation loop on the test dataloader
|
||||
"""
|
||||
@@ -672,8 +677,7 @@ def _seed_all_random_engines(seed: int):
|
||||
class ExperimentConfig:
|
||||
generic_model_args: DictConfig = get_default_args_field(GenericModel)
|
||||
solver_args: DictConfig = get_default_args_field(init_optimizer)
|
||||
dataset_args: DictConfig = get_default_args_field(dataset_zoo)
|
||||
dataloader_args: DictConfig = get_default_args_field(dataloader_zoo)
|
||||
data_source_args: DictConfig = get_default_args_field(ImplicitronDataSource)
|
||||
architecture: str = "generic"
|
||||
detect_anomaly: bool = False
|
||||
eval_only: bool = False
|
||||
|
||||
Reference in New Issue
Block a user