mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2026-01-17 03:40:34 +08:00
add L1 support for KNN & Chamfer
Summary: Added L1 norm for KNN and chamfer op * The norm is now specified with a variable `norm` which can only be 1 or 2 Reviewed By: bottler Differential Revision: D35419637 fbshipit-source-id: 77813fec650b30c28342af90d5ed02c89133e136
This commit is contained in:
committed by
Facebook GitHub Bot
parent
4b94649f7b
commit
67fff956a2
@@ -87,7 +87,7 @@ class TestChamfer(TestCaseMixin, unittest.TestCase):
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def chamfer_distance_naive_pointclouds(p1, p2, device="cpu"):
|
||||
def chamfer_distance_naive_pointclouds(p1, p2, norm: int = 2, device="cpu"):
|
||||
"""
|
||||
Naive iterative implementation of nearest neighbor and chamfer distance.
|
||||
x and y are assumed to be pointclouds objects with points and optionally normals.
|
||||
@@ -121,7 +121,14 @@ class TestChamfer(TestCaseMixin, unittest.TestCase):
|
||||
for n in range(N):
|
||||
for i1 in range(x_lengths[n]):
|
||||
for i2 in range(y_lengths[n]):
|
||||
dist[n, i1, i2] = torch.sum((x[n, i1, :] - y[n, i2, :]) ** 2)
|
||||
if norm == 2:
|
||||
dist[n, i1, i2] = torch.sum((x[n, i1, :] - y[n, i2, :]) ** 2)
|
||||
elif norm == 1:
|
||||
dist[n, i1, i2] = torch.sum(
|
||||
torch.abs(x[n, i1, :] - y[n, i2, :])
|
||||
)
|
||||
else:
|
||||
raise ValueError("No support for norm %d" % (norm))
|
||||
|
||||
x_dist = torch.min(dist, dim=2)[0] # (N, P1)
|
||||
y_dist = torch.min(dist, dim=1)[0] # (N, P2)
|
||||
@@ -159,7 +166,7 @@ class TestChamfer(TestCaseMixin, unittest.TestCase):
|
||||
return loss, lnorm
|
||||
|
||||
@staticmethod
|
||||
def chamfer_distance_naive(x, y, x_normals=None, y_normals=None):
|
||||
def chamfer_distance_naive(x, y, x_normals=None, y_normals=None, norm: int = 2):
|
||||
"""
|
||||
Naive iterative implementation of nearest neighbor and chamfer distance.
|
||||
Returns lists of the unreduced loss and loss_normals. This naive
|
||||
@@ -174,7 +181,14 @@ class TestChamfer(TestCaseMixin, unittest.TestCase):
|
||||
for n in range(N):
|
||||
for i1 in range(P1):
|
||||
for i2 in range(P2):
|
||||
dist[n, i1, i2] = torch.sum((x[n, i1, :] - y[n, i2, :]) ** 2)
|
||||
if norm == 2:
|
||||
dist[n, i1, i2] = torch.sum((x[n, i1, :] - y[n, i2, :]) ** 2)
|
||||
elif norm == 1:
|
||||
dist[n, i1, i2] = torch.sum(
|
||||
torch.abs(x[n, i1, :] - y[n, i2, :])
|
||||
)
|
||||
else:
|
||||
raise ValueError("No support for norm %d" % (norm))
|
||||
|
||||
loss = [
|
||||
torch.min(dist, dim=2)[0], # (N, P1)
|
||||
@@ -208,30 +222,34 @@ class TestChamfer(TestCaseMixin, unittest.TestCase):
|
||||
"""
|
||||
N, max_P1, max_P2 = 7, 10, 18
|
||||
device = get_random_cuda_device()
|
||||
points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device)
|
||||
p1 = points_normals.p1
|
||||
p2 = points_normals.p2
|
||||
weights = points_normals.weights
|
||||
p11 = p1.detach().clone()
|
||||
p22 = p2.detach().clone()
|
||||
p11.requires_grad = True
|
||||
p22.requires_grad = True
|
||||
P1 = p1.shape[1]
|
||||
P2 = p2.shape[1]
|
||||
|
||||
pred_loss, pred_loss_norm = TestChamfer.chamfer_distance_naive(p1, p2)
|
||||
for norm in [1, 2]:
|
||||
points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device)
|
||||
p1 = points_normals.p1
|
||||
p2 = points_normals.p2
|
||||
weights = points_normals.weights
|
||||
p11 = p1.detach().clone()
|
||||
p22 = p2.detach().clone()
|
||||
p11.requires_grad = True
|
||||
p22.requires_grad = True
|
||||
P1 = p1.shape[1]
|
||||
P2 = p2.shape[1]
|
||||
|
||||
# point_reduction = "mean".
|
||||
loss, loss_norm = chamfer_distance(p11, p22, weights=weights)
|
||||
pred_loss = pred_loss[0].sum(1) / P1 + pred_loss[1].sum(1) / P2
|
||||
pred_loss *= weights
|
||||
pred_loss = pred_loss.sum() / weights.sum()
|
||||
pred_loss, pred_loss_norm = TestChamfer.chamfer_distance_naive(
|
||||
p1, p2, norm=norm
|
||||
)
|
||||
|
||||
self.assertClose(loss, pred_loss)
|
||||
self.assertTrue(loss_norm is None)
|
||||
# point_reduction = "mean".
|
||||
loss, loss_norm = chamfer_distance(p11, p22, weights=weights, norm=norm)
|
||||
pred_loss = pred_loss[0].sum(1) / P1 + pred_loss[1].sum(1) / P2
|
||||
pred_loss *= weights
|
||||
pred_loss = pred_loss.sum() / weights.sum()
|
||||
|
||||
# Check gradients
|
||||
self._check_gradients(loss, None, pred_loss, None, p1, p11, p2, p22)
|
||||
self.assertClose(loss, pred_loss)
|
||||
self.assertTrue(loss_norm is None)
|
||||
|
||||
# Check gradients
|
||||
self._check_gradients(loss, None, pred_loss, None, p1, p11, p2, p22)
|
||||
|
||||
def test_chamfer_vs_naive_pointcloud(self):
|
||||
"""
|
||||
@@ -242,63 +260,67 @@ class TestChamfer(TestCaseMixin, unittest.TestCase):
|
||||
"""
|
||||
N, max_P1, max_P2 = 3, 70, 70
|
||||
device = get_random_cuda_device()
|
||||
points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device)
|
||||
weights = points_normals.weights
|
||||
x_lengths = points_normals.p1_lengths
|
||||
y_lengths = points_normals.p2_lengths
|
||||
|
||||
# Chamfer with tensors as input for heterogeneous pointclouds.
|
||||
cham_tensor, norm_tensor = chamfer_distance(
|
||||
points_normals.p1,
|
||||
points_normals.p2,
|
||||
x_normals=points_normals.n1,
|
||||
y_normals=points_normals.n2,
|
||||
x_lengths=points_normals.p1_lengths,
|
||||
y_lengths=points_normals.p2_lengths,
|
||||
weights=weights,
|
||||
)
|
||||
for norm in [1, 2]:
|
||||
points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device)
|
||||
weights = points_normals.weights
|
||||
x_lengths = points_normals.p1_lengths
|
||||
y_lengths = points_normals.p2_lengths
|
||||
|
||||
# Chamfer with pointclouds as input.
|
||||
pred_loss, pred_norm_loss = TestChamfer.chamfer_distance_naive_pointclouds(
|
||||
points_normals.cloud1, points_normals.cloud2, device=device
|
||||
)
|
||||
# Chamfer with tensors as input for heterogeneous pointclouds.
|
||||
cham_tensor, norm_tensor = chamfer_distance(
|
||||
points_normals.p1,
|
||||
points_normals.p2,
|
||||
x_normals=points_normals.n1,
|
||||
y_normals=points_normals.n2,
|
||||
x_lengths=points_normals.p1_lengths,
|
||||
y_lengths=points_normals.p2_lengths,
|
||||
weights=weights,
|
||||
norm=norm,
|
||||
)
|
||||
|
||||
# Mean reduction point loss.
|
||||
pred_loss[0] *= weights.view(N, 1)
|
||||
pred_loss[1] *= weights.view(N, 1)
|
||||
pred_loss_mean = (
|
||||
pred_loss[0].sum(1) / x_lengths + pred_loss[1].sum(1) / y_lengths
|
||||
)
|
||||
pred_loss_mean = pred_loss_mean.sum()
|
||||
pred_loss_mean /= weights.sum()
|
||||
# Chamfer with pointclouds as input.
|
||||
pred_loss, pred_norm_loss = TestChamfer.chamfer_distance_naive_pointclouds(
|
||||
points_normals.cloud1, points_normals.cloud2, norm=norm, device=device
|
||||
)
|
||||
|
||||
# Mean reduction norm loss.
|
||||
pred_norm_loss[0] *= weights.view(N, 1)
|
||||
pred_norm_loss[1] *= weights.view(N, 1)
|
||||
pred_norm_loss_mean = (
|
||||
pred_norm_loss[0].sum(1) / x_lengths + pred_norm_loss[1].sum(1) / y_lengths
|
||||
)
|
||||
pred_norm_loss_mean = pred_norm_loss_mean.sum() / weights.sum()
|
||||
# Mean reduction point loss.
|
||||
pred_loss[0] *= weights.view(N, 1)
|
||||
pred_loss[1] *= weights.view(N, 1)
|
||||
pred_loss_mean = (
|
||||
pred_loss[0].sum(1) / x_lengths + pred_loss[1].sum(1) / y_lengths
|
||||
)
|
||||
pred_loss_mean = pred_loss_mean.sum()
|
||||
pred_loss_mean /= weights.sum()
|
||||
|
||||
self.assertClose(pred_loss_mean, cham_tensor)
|
||||
self.assertClose(pred_norm_loss_mean, norm_tensor)
|
||||
# Mean reduction norm loss.
|
||||
pred_norm_loss[0] *= weights.view(N, 1)
|
||||
pred_norm_loss[1] *= weights.view(N, 1)
|
||||
pred_norm_loss_mean = (
|
||||
pred_norm_loss[0].sum(1) / x_lengths
|
||||
+ pred_norm_loss[1].sum(1) / y_lengths
|
||||
)
|
||||
pred_norm_loss_mean = pred_norm_loss_mean.sum() / weights.sum()
|
||||
|
||||
self._check_gradients(
|
||||
cham_tensor,
|
||||
norm_tensor,
|
||||
pred_loss_mean,
|
||||
pred_norm_loss_mean,
|
||||
points_normals.cloud1.points_list(),
|
||||
points_normals.p1,
|
||||
points_normals.cloud2.points_list(),
|
||||
points_normals.p2,
|
||||
points_normals.cloud1.normals_list(),
|
||||
points_normals.n1,
|
||||
points_normals.cloud2.normals_list(),
|
||||
points_normals.n2,
|
||||
x_lengths,
|
||||
y_lengths,
|
||||
)
|
||||
self.assertClose(pred_loss_mean, cham_tensor)
|
||||
self.assertClose(pred_norm_loss_mean, norm_tensor)
|
||||
|
||||
self._check_gradients(
|
||||
cham_tensor,
|
||||
norm_tensor,
|
||||
pred_loss_mean,
|
||||
pred_norm_loss_mean,
|
||||
points_normals.cloud1.points_list(),
|
||||
points_normals.p1,
|
||||
points_normals.cloud2.points_list(),
|
||||
points_normals.p2,
|
||||
points_normals.cloud1.normals_list(),
|
||||
points_normals.n1,
|
||||
points_normals.cloud2.normals_list(),
|
||||
points_normals.n2,
|
||||
x_lengths,
|
||||
y_lengths,
|
||||
)
|
||||
|
||||
def test_chamfer_pointcloud_object_withnormals(self):
|
||||
N = 5
|
||||
@@ -742,6 +764,19 @@ class TestChamfer(TestCaseMixin, unittest.TestCase):
|
||||
with self.assertRaisesRegex(ValueError, "Pointclouds objects or torch.Tensor"):
|
||||
chamfer_distance(x=[1, 1, 1], y=[1, 1, 1])
|
||||
|
||||
def test_invalid_norm(self):
|
||||
N, P1, P2 = 7, 10, 18
|
||||
device = get_random_cuda_device()
|
||||
points_normals = TestChamfer.init_pointclouds(N, P1, P2, device)
|
||||
p1 = points_normals.p1
|
||||
p2 = points_normals.p2
|
||||
|
||||
with self.assertRaisesRegex(ValueError, "Support for 1 or 2 norm."):
|
||||
chamfer_distance(p1, p2, norm=0)
|
||||
|
||||
with self.assertRaisesRegex(ValueError, "Support for 1 or 2 norm."):
|
||||
chamfer_distance(p1, p2, norm=3)
|
||||
|
||||
@staticmethod
|
||||
def chamfer_with_init(
|
||||
batch_size: int,
|
||||
|
||||
Reference in New Issue
Block a user