avoid deprecated raysamplers

Summary: Migrate away from NDCGridRaysampler and GridRaysampler to their more flexible replacements.

Reviewed By: patricklabatut

Differential Revision: D33281584

fbshipit-source-id: 65f8702e700a32d38f7cd6bda3924bb1707a0633
This commit is contained in:
Jeremy Reizenstein
2022-01-24 10:51:03 -08:00
committed by Facebook GitHub Bot
parent 3eb4233844
commit 67778caee8
6 changed files with 30 additions and 30 deletions

View File

@@ -10,7 +10,7 @@ import torch
from common_testing import TestCaseMixin
from pytorch3d.renderer import (
MeshRasterizer,
NDCGridRaysampler,
NDCMultinomialRaysampler,
PerspectiveCameras,
PointsRasterizationSettings,
PointsRasterizer,
@@ -172,7 +172,7 @@ class TestPixels(TestCaseMixin, unittest.TestCase):
def test_raysampler(self):
data = _CommonData()
gridsampler = NDCGridRaysampler(
gridsampler = NDCMultinomialRaysampler(
image_width=data.W,
image_height=data.H,
n_pts_per_ray=2,

View File

@@ -12,13 +12,13 @@ from common_testing import TestCaseMixin
from pytorch3d.renderer import (
BlendParams,
EmissionAbsorptionRaymarcher,
GridRaysampler,
ImplicitRenderer,
Materials,
MeshRasterizer,
MeshRenderer,
MonteCarloRaysampler,
NDCGridRaysampler,
MultinomialRaysampler,
NDCMultinomialRaysampler,
PointLights,
RasterizationSettings,
RayBundle,
@@ -142,7 +142,7 @@ class TestRenderImplicit(TestCaseMixin, unittest.TestCase):
# init a trivial renderer
renderer = ImplicitRenderer(
raysampler=NDCGridRaysampler(
raysampler=NDCMultinomialRaysampler(
image_width=100,
image_height=100,
n_pts_per_ray=10,
@@ -180,7 +180,7 @@ class TestRenderImplicit(TestCaseMixin, unittest.TestCase):
sphere_centroid.requires_grad = True
# init the grid raysampler with the ndc grid
raysampler = NDCGridRaysampler(
raysampler = NDCMultinomialRaysampler(
image_width=image_size[1],
image_height=image_size[0],
n_pts_per_ray=256,
@@ -355,7 +355,7 @@ class TestRenderImplicit(TestCaseMixin, unittest.TestCase):
cameras = init_cameras(n_frames, image_size=image_size)
# init the grid raysampler
raysampler = GridRaysampler(
raysampler = MultinomialRaysampler(
min_x=0.5,
max_x=image_size[1] - 0.5,
min_y=0.5,

View File

@@ -15,9 +15,9 @@ from pytorch3d.renderer import (
AbsorptionOnlyRaymarcher,
AlphaCompositor,
EmissionAbsorptionRaymarcher,
GridRaysampler,
MonteCarloRaysampler,
NDCGridRaysampler,
MultinomialRaysampler,
NDCMultinomialRaysampler,
PerspectiveCameras,
PointsRasterizationSettings,
PointsRasterizer,
@@ -228,7 +228,7 @@ class TestRenderVolumes(TestCaseMixin, unittest.TestCase):
with self.assertRaises(ValueError):
VolumeRenderer(raysampler=bad_raysampler, raymarcher=bad_raymarcher)
raysampler = NDCGridRaysampler(
raysampler = NDCMultinomialRaysampler(
image_width=100,
image_height=100,
n_pts_per_ray=10,
@@ -339,7 +339,7 @@ class TestRenderVolumes(TestCaseMixin, unittest.TestCase):
# init the grid raysampler with the ndc grid
coord_range = 1.0
half_pix_size = coord_range / max(*image_size)
raysampler = NDCGridRaysampler(
raysampler = NDCMultinomialRaysampler(
image_width=image_size[1],
image_height=image_size[0],
n_pts_per_ray=256,
@@ -431,7 +431,7 @@ class TestRenderVolumes(TestCaseMixin, unittest.TestCase):
):
"""
Tests that rendering with the MonteCarloRaysampler matches the
rendering with GridRaysampler sampled at the corresponding
rendering with MultinomialRaysampler sampled at the corresponding
MonteCarlo locations.
"""
volumes = init_boundary_volume(
@@ -442,7 +442,7 @@ class TestRenderVolumes(TestCaseMixin, unittest.TestCase):
cameras = init_cameras(n_frames, image_size=image_size)
# init the grid raysampler
raysampler_grid = GridRaysampler(
raysampler_multinomial = MultinomialRaysampler(
min_x=0.5,
max_x=image_size[1] - 0.5,
min_y=0.5,
@@ -475,11 +475,11 @@ class TestRenderVolumes(TestCaseMixin, unittest.TestCase):
(images_opacities_grid, ray_bundle_grid),
) = [
VolumeRenderer(
raysampler=raysampler_grid,
raysampler=raysampler_multinomial,
raymarcher=raymarcher,
sample_mode="bilinear",
)(cameras=cameras, volumes=volumes)
for raysampler in (raysampler_mc, raysampler_grid)
for raysampler in (raysampler_mc, raysampler_multinomial)
]
# convert the mc sampling locations to [-1, 1]
@@ -523,7 +523,7 @@ class TestRenderVolumes(TestCaseMixin, unittest.TestCase):
cameras = init_cameras(n_frames, image_size=image_size)
# init the grid raysampler
raysampler = GridRaysampler(
raysampler = MultinomialRaysampler(
min_x=0.5,
max_x=image_size[1] - 0.5,
min_y=0.5,
@@ -614,7 +614,7 @@ class TestRenderVolumes(TestCaseMixin, unittest.TestCase):
volumes.features().requires_grad = True
volumes.densities().requires_grad = True
raysampler = GridRaysampler(
raysampler = MultinomialRaysampler(
min_x=0.5,
max_x=image_size[1] - 0.5,
min_y=0.5,