Return R2N2 voxel coordinates

Summary: Return R2N2's voxel coordinates.

Reviewed By: nikhilaravi

Differential Revision: D22462530

fbshipit-source-id: a995cfa0957b2561eb3b0f4591cb1db42170bc68
This commit is contained in:
Luya Gao 2020-08-07 13:21:26 -07:00 committed by Facebook GitHub Bot
parent 326e4ccb5b
commit 63ba74f1a8
7 changed files with 602 additions and 135 deletions

View File

@ -1,6 +1,6 @@
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
from .r2n2 import R2N2, BlenderCamera from .r2n2 import R2N2, BlenderCamera, collate_batched_R2N2, render_cubified_voxels
from .shapenet import ShapeNetCore from .shapenet import ShapeNetCore
from .utils import collate_batched_meshes from .utils import collate_batched_meshes

View File

@ -1,6 +1,7 @@
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
from .r2n2 import R2N2, BlenderCamera from .r2n2 import R2N2
from .utils import BlenderCamera, collate_batched_R2N2, render_cubified_voxels
__all__ = [k for k in globals().keys() if not k.startswith("_")] __all__ = [k for k in globals().keys() if not k.startswith("_")]

View File

@ -10,20 +10,32 @@ import numpy as np
import torch import torch
from PIL import Image from PIL import Image
from pytorch3d.datasets.shapenet_base import ShapeNetBase from pytorch3d.datasets.shapenet_base import ShapeNetBase
from pytorch3d.datasets.utils import compute_extrinsic_matrix
from pytorch3d.io import load_obj from pytorch3d.io import load_obj
from pytorch3d.renderer import HardPhongShader from pytorch3d.renderer import HardPhongShader
from pytorch3d.renderer.cameras import CamerasBase
from pytorch3d.transforms import Transform3d
from tabulate import tabulate from tabulate import tabulate
from .utils import (
BlenderCamera,
align_bbox,
compute_extrinsic_matrix,
read_binvox_coords,
voxelize,
)
SYNSET_DICT_DIR = Path(__file__).resolve().parent SYNSET_DICT_DIR = Path(__file__).resolve().parent
MAX_CAMERA_DISTANCE = 1.75 # Constant from R2N2.
# Default values of rotation, translation and intrinsic matrices for BlenderCamera. VOXEL_SIZE = 128
r = np.expand_dims(np.eye(3), axis=0) # (1, 3, 3) # Intrinsic matrix extracted from Blender. Taken from meshrcnn codebase:
t = np.expand_dims(np.zeros(3), axis=0) # (1, 3) # https://github.com/facebookresearch/meshrcnn/blob/master/shapenet/utils/coords.py
k = np.expand_dims(np.eye(4), axis=0) # (1, 4, 4) BLENDER_INTRINSIC = torch.tensor(
[
[2.1875, 0.0, 0.0, 0.0],
[0.0, 2.1875, 0.0, 0.0],
[0.0, 0.0, -1.002002, -0.2002002],
[0.0, 0.0, -1.0, 0.0],
]
)
class R2N2(ShapeNetBase): class R2N2(ShapeNetBase):
@ -42,6 +54,7 @@ class R2N2(ShapeNetBase):
r2n2_dir, r2n2_dir,
splits_file, splits_file,
return_all_views: bool = True, return_all_views: bool = True,
return_voxels: bool = False,
): ):
""" """
Store each object's synset id and models id the given directories. Store each object's synset id and models id the given directories.
@ -54,6 +67,8 @@ class R2N2(ShapeNetBase):
return_all_views (bool): Indicator of whether or not to load all the views in return_all_views (bool): Indicator of whether or not to load all the views in
the split. If set to False, one of the views in the split will be randomly the split. If set to False, one of the views in the split will be randomly
selected and loaded. selected and loaded.
return_voxels(bool): Indicator of whether or not to return voxels as a tensor
of shape (D, D, D) where D is the number of voxels along each dimension.
""" """
super().__init__() super().__init__()
self.shapenet_dir = shapenet_dir self.shapenet_dir = shapenet_dir
@ -83,6 +98,16 @@ class R2N2(ShapeNetBase):
) % (r2n2_dir) ) % (r2n2_dir)
warnings.warn(msg) warnings.warn(msg)
self.return_voxels = return_voxels
# Check if the folder containing voxel coordinates is included in r2n2_dir.
if not path.isdir(path.join(r2n2_dir, "ShapeNetVox32")):
self.return_voxels = False
msg = (
"ShapeNetVox32 not found in %s. Voxel coordinates will "
"be skipped when returning models."
) % (r2n2_dir)
warnings.warn(msg)
synset_set = set() synset_set = set()
# Store lists of views of each model in a list. # Store lists of views of each model in a list.
self.views_per_model_list = [] self.views_per_model_list = []
@ -173,6 +198,8 @@ class R2N2(ShapeNetBase):
- R: Rotation matrix of shape (V, 3, 3), where V is number of views returned. - R: Rotation matrix of shape (V, 3, 3), where V is number of views returned.
- T: Translation matrix of shape (V, 3), where V is number of views returned. - T: Translation matrix of shape (V, 3), where V is number of views returned.
- K: Intrinsic matrix of shape (V, 4, 4), where V is number of views returned. - K: Intrinsic matrix of shape (V, 4, 4), where V is number of views returned.
- voxels: Voxels of shape (D, D, D), where D is the number of voxels along each
dimension.
""" """
if isinstance(model_idx, tuple): if isinstance(model_idx, tuple):
model_idx, view_idxs = model_idx model_idx, view_idxs = model_idx
@ -208,6 +235,7 @@ class R2N2(ShapeNetBase):
model["label"] = self.synset_dict[model["synset_id"]] model["label"] = self.synset_dict[model["synset_id"]]
model["images"] = None model["images"] = None
images, Rs, Ts, voxel_RTs = [], [], [], []
# Retrieve R2N2's renderings if required. # Retrieve R2N2's renderings if required.
if self.return_images: if self.return_images:
rendering_path = path.join( rendering_path = path.join(
@ -217,12 +245,9 @@ class R2N2(ShapeNetBase):
model["model_id"], model["model_id"],
"rendering", "rendering",
) )
# Read metadata file to obtain params for calibration matrices. # Read metadata file to obtain params for calibration matrices.
with open(path.join(rendering_path, "rendering_metadata.txt"), "r") as f: with open(path.join(rendering_path, "rendering_metadata.txt"), "r") as f:
metadata_lines = f.readlines() metadata_lines = f.readlines()
images, Rs, Ts = [], [], []
for i in model_views: for i in model_views:
# Read image. # Read image.
image_path = path.join(rendering_path, "%02d.png" % i) image_path = path.join(rendering_path, "%02d.png" % i)
@ -234,9 +259,13 @@ class R2N2(ShapeNetBase):
azim, elev, yaw, dist_ratio, fov = [ azim, elev, yaw, dist_ratio, fov = [
float(v) for v in metadata_lines[i].strip().split(" ") float(v) for v in metadata_lines[i].strip().split(" ")
] ]
R, T = self._compute_camera_calibration(azim, elev, dist_ratio) dist = dist_ratio * MAX_CAMERA_DISTANCE
# Extrinsic matrix before transformation to PyTorch3D world space.
RT = compute_extrinsic_matrix(azim, elev, dist)
R, T = self._compute_camera_calibration(RT)
Rs.append(R) Rs.append(R)
Ts.append(T) Ts.append(T)
voxel_RTs.append(RT)
# Intrinsic matrix extracted from the Blender with slight modification to work with # Intrinsic matrix extracted from the Blender with slight modification to work with
# PyTorch3D world space. Taken from meshrcnn codebase: # PyTorch3D world space. Taken from meshrcnn codebase:
@ -254,27 +283,48 @@ class R2N2(ShapeNetBase):
model["T"] = torch.stack(Ts) model["T"] = torch.stack(Ts)
model["K"] = K.expand(len(model_views), 4, 4) model["K"] = K.expand(len(model_views), 4, 4)
voxels_list = []
# Read voxels if required.
voxel_path = path.join(
self.r2n2_dir,
"ShapeNetVox32",
model["synset_id"],
model["model_id"],
"model.binvox",
)
if self.return_voxels:
if not path.isfile(voxel_path):
msg = "Voxel file not found for model %s from category %s."
raise FileNotFoundError(msg % (model["model_id"], model["synset_id"]))
with open(voxel_path, "rb") as f:
# Read voxel coordinates as a tensor of shape (N, 3).
voxel_coords = read_binvox_coords(f)
# Align voxels to the same coordinate system as mesh verts.
voxel_coords = align_bbox(voxel_coords, model["verts"])
for RT in voxel_RTs:
# Compute projection matrix.
P = BLENDER_INTRINSIC.mm(RT)
# Convert voxel coordinates of shape (N, 3) to voxels of shape (D, D, D).
voxels = voxelize(voxel_coords, P, VOXEL_SIZE)
voxels_list.append(voxels)
model["voxels"] = torch.stack(voxels_list)
return model return model
def _compute_camera_calibration(self, azim: float, elev: float, dist_ratio: float): def _compute_camera_calibration(self, RT):
""" """
Helper function for calculating rotation and translation matrices from azimuth Helper function for calculating rotation and translation matrices from ShapeNet
angle, elevation and distance ratio. to camera transformation and ShapeNet to PyTorch3D transformation.
Args: Args:
azim: Rotation about the z-axis, in degrees. RT: Extrinsic matrix that performs ShapeNet world view to camera view
elev: Rotation above the xy-plane, in degrees. transformation.
dist_ratio: Ratio of distance from the origin to the maximum camera distance.
Returns: Returns:
- R: Rotation matrix of shape (3, 3). R: Rotation matrix of shape (3, 3).
- T: Translation matrix of shape (3). T: Translation matrix of shape (3).
""" """
# Retrive R,T,K of the selected view(s) by reading the metadata.
MAX_CAMERA_DISTANCE = 1.75 # Constant from R2N2.
dist = dist_ratio * MAX_CAMERA_DISTANCE
RT = compute_extrinsic_matrix(azim, elev, dist)
# Transform the mesh vertices from shapenet world to pytorch3d world. # Transform the mesh vertices from shapenet world to pytorch3d world.
shapenet_to_pytorch3d = torch.tensor( shapenet_to_pytorch3d = torch.tensor(
[ [
@ -285,9 +335,7 @@ class R2N2(ShapeNetBase):
], ],
dtype=torch.float32, dtype=torch.float32,
) )
RT = compute_extrinsic_matrix(azim, elev, dist) # (4, 4)
RT = torch.transpose(RT, 0, 1).mm(shapenet_to_pytorch3d) # (4, 4) RT = torch.transpose(RT, 0, 1).mm(shapenet_to_pytorch3d) # (4, 4)
# Extract rotation and translation matrices from RT. # Extract rotation and translation matrices from RT.
R = RT[:3, :3] R = RT[:3, :3]
T = RT[3, :3] T = RT[3, :3]
@ -348,27 +396,3 @@ class R2N2(ShapeNetBase):
return super().render( return super().render(
idxs=idxs, shader_type=shader_type, device=device, cameras=cameras, **kwargs idxs=idxs, shader_type=shader_type, device=device, cameras=cameras, **kwargs
) )
class BlenderCamera(CamerasBase):
"""
Camera for rendering objects with calibration matrices from the R2N2 dataset
(which uses Blender for rendering the views for each model).
"""
def __init__(self, R=r, T=t, K=k, device="cpu"):
"""
Args:
R: Rotation matrix of shape (N, 3, 3).
T: Translation matrix of shape (N, 3).
K: Intrinsic matrix of shape (N, 4, 4).
device: torch.device or str.
"""
# The initializer formats all inputs to torch tensors and broadcasts
# all the inputs to have the same batch dimension where necessary.
super().__init__(device=device, R=R, T=T, K=K)
def get_projection_transform(self, **kwargs) -> Transform3d:
transform = Transform3d(device=self.device)
transform._matrix = self.K.transpose(1, 2).contiguous() # pyre-ignore[16]
return transform

View File

@ -0,0 +1,483 @@
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
import math
from typing import Dict, List
import numpy as np
import torch
from pytorch3d.datasets.utils import collate_batched_meshes
from pytorch3d.ops import cubify
from pytorch3d.renderer import (
HardPhongShader,
MeshRasterizer,
MeshRenderer,
PointLights,
RasterizationSettings,
TexturesVertex,
)
from pytorch3d.renderer.cameras import CamerasBase
from pytorch3d.transforms import Transform3d
# Empirical min and max over the dataset from meshrcnn.
# https://github.com/facebookresearch/meshrcnn/blob/master/shapenet/utils/coords.py#L9
SHAPENET_MIN_ZMIN = 0.67
SHAPENET_MAX_ZMAX = 0.92
# Threshold for cubify from meshrcnn:
# https://github.com/facebookresearch/meshrcnn/blob/master/configs/shapenet/voxmesh_R50.yaml#L11
CUBIFY_THRESH = 0.2
# Default values of rotation, translation and intrinsic matrices for BlenderCamera.
r = np.expand_dims(np.eye(3), axis=0) # (1, 3, 3)
t = np.expand_dims(np.zeros(3), axis=0) # (1, 3)
k = np.expand_dims(np.eye(4), axis=0) # (1, 4, 4)
def collate_batched_R2N2(batch: List[Dict]):
"""
Take a list of objects in the form of dictionaries and merge them
into a single dictionary. This function can be used with a Dataset
object to create a torch.utils.data.Dataloader which directly
returns Meshes objects.
TODO: Add support for textures.
Args:
batch: List of dictionaries containing information about objects
in the dataset.
Returns:
collated_dict: Dictionary of collated lists. If batch contains both
verts and faces, a collated mesh batch is also returned.
"""
collated_dict = collate_batched_meshes(batch)
# If collate_batched_meshes receives R2N2 items with images and that
# all models have the same number of views V, stack the batches of
# views of each model into a new batch of shape (N, V, H, W, 3).
# Otherwise leave it as a list.
if "images" in collated_dict:
try:
collated_dict["images"] = torch.stack(collated_dict["images"])
except RuntimeError:
print(
"Models don't have the same number of views. Now returning "
"lists of images instead of batches."
)
# If collate_batched_meshes receives R2N2 items with camera calibration
# matrices and that all models have the same number of views V, stack each
# type of matrices into a new batch of shape (N, V, ...).
# Otherwise leave them as lists.
if all(x in collated_dict for x in ["R", "T", "K"]):
try:
collated_dict["R"] = torch.stack(collated_dict["R"]) # (N, V, 3, 3)
collated_dict["T"] = torch.stack(collated_dict["T"]) # (N, V, 3)
collated_dict["K"] = torch.stack(collated_dict["K"]) # (N, V, 4, 4)
except RuntimeError:
print(
"Models don't have the same number of views. Now returning "
"lists of calibration matrices instead of a batched tensor."
)
# If collate_batched_meshes receives voxels and all models have the same
# number of views V, stack the batches of voxels into a new batch of shape
# (N, V, S, S, S), where S is the voxel size.
if "voxels" in collated_dict:
try:
collated_dict["voxels"] = torch.stack(collated_dict["voxels"])
except RuntimeError:
print(
"Models don't have the same number of views. Now returning "
"lists of voxels instead of a batched tensor."
)
return collated_dict
def compute_extrinsic_matrix(azimuth, elevation, distance):
"""
Copied from meshrcnn codebase:
https://github.com/facebookresearch/meshrcnn/blob/master/shapenet/utils/coords.py#L96
Compute 4x4 extrinsic matrix that converts from homogenous world coordinates
to homogenous camera coordinates. We assume that the camera is looking at the
origin.
Used in R2N2 Dataset when computing calibration matrices.
Args:
azimuth: Rotation about the z-axis, in degrees.
elevation: Rotation above the xy-plane, in degrees.
distance: Distance from the origin.
Returns:
FloatTensor of shape (4, 4).
"""
azimuth, elevation, distance = float(azimuth), float(elevation), float(distance)
az_rad = -math.pi * azimuth / 180.0
el_rad = -math.pi * elevation / 180.0
sa = math.sin(az_rad)
ca = math.cos(az_rad)
se = math.sin(el_rad)
ce = math.cos(el_rad)
R_world2obj = torch.tensor(
[[ca * ce, sa * ce, -se], [-sa, ca, 0], [ca * se, sa * se, ce]]
)
R_obj2cam = torch.tensor([[0.0, 1.0, 0.0], [0.0, 0.0, 1.0], [1.0, 0.0, 0.0]])
R_world2cam = R_obj2cam.mm(R_world2obj)
cam_location = torch.tensor([[distance, 0, 0]]).t()
T_world2cam = -(R_obj2cam.mm(cam_location))
RT = torch.cat([R_world2cam, T_world2cam], dim=1)
RT = torch.cat([RT, torch.tensor([[0.0, 0, 0, 1]])])
# Georgia: For some reason I cannot fathom, when Blender loads a .obj file it
# rotates the model 90 degrees about the x axis. To compensate for this quirk we
# roll that rotation into the extrinsic matrix here
rot = torch.tensor([[1, 0, 0, 0], [0, 0, -1, 0], [0, 1, 0, 0], [0, 0, 0, 1]])
RT = RT.mm(rot.to(RT))
return RT
def read_binvox_coords(f, integer_division=True, dtype=torch.float32):
"""
Copied from meshrcnn codebase:
https://github.com/facebookresearch/meshrcnn/blob/master/shapenet/utils/binvox_torch.py#L5
Read a binvox file and return the indices of all nonzero voxels.
This matches the behavior of binvox_rw.read_as_coord_array
(https://github.com/dimatura/binvox-rw-py/blob/public/binvox_rw.py#L153)
but this implementation uses torch rather than numpy, and is more efficient
due to improved vectorization.
Georgia: I think that binvox_rw.read_as_coord_array actually has a bug; when converting
linear indices into three-dimensional indices, they use floating-point
division instead of integer division. We can reproduce their incorrect
implementation by passing integer_division=False.
Args:
f (str): A file pointer to the binvox file to read
integer_division (bool): If False, then match the buggy implementation from binvox_rw
dtype: Datatype of the output tensor. Use float64 to match binvox_rw
Returns:
coords (tensor): A tensor of shape (N, 3) where N is the number of nonzero voxels,
and coords[i] = (x, y, z) gives the index of the ith nonzero voxel. If the
voxel grid has shape (V, V, V) then we have 0 <= x, y, z < V.
"""
size, translation, scale = _read_binvox_header(f)
storage = torch.ByteStorage.from_buffer(f.read())
data = torch.tensor([], dtype=torch.uint8)
data.set_(source=storage)
vals, counts = data[::2], data[1::2]
idxs = _compute_idxs(vals, counts)
if not integer_division:
idxs = idxs.to(dtype)
x_idxs = idxs // (size * size)
zy_idxs = idxs % (size * size)
z_idxs = zy_idxs // size
y_idxs = zy_idxs % size
coords = torch.stack([x_idxs, y_idxs, z_idxs], dim=1)
return coords.to(dtype)
def _compute_idxs(vals, counts):
"""
Copied from meshrcnn codebase:
https://github.com/facebookresearch/meshrcnn/blob/master/shapenet/utils/binvox_torch.py#L58
Fast vectorized version of index computation.
Args:
vals: tensor of binary values indicating voxel presence in a dense format.
counts: tensor of number of occurence of each value in vals.
Returns:
idxs: A tensor of shape (N), where N is the number of nonzero voxels.
"""
# Consider an example where:
# vals = [0, 1, 0, 1, 1]
# counts = [2, 3, 3, 2, 1]
#
# These values of counts and vals mean that the dense binary grid is:
# [0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1]
#
# So the nonzero indices we want to return are:
# [2, 3, 4, 8, 9, 10]
# After the cumsum we will have:
# end_idxs = [2, 5, 8, 10, 11]
end_idxs = counts.cumsum(dim=0)
# After masking and computing start_idx we have:
# end_idxs = [5, 10, 11]
# counts = [3, 2, 1]
# start_idxs = [2, 8, 10]
mask = vals == 1
end_idxs = end_idxs[mask]
counts = counts[mask].to(end_idxs)
start_idxs = end_idxs - counts
# We initialize delta as:
# [2, 1, 1, 1, 1, 1]
delta = torch.ones(counts.sum().item(), dtype=torch.int64)
delta[0] = start_idxs[0]
# We compute pos = [3, 5], val = [3, 0]; then delta is
# [2, 1, 1, 4, 1, 1]
pos = counts.cumsum(dim=0)[:-1]
val = start_idxs[1:] - end_idxs[:-1]
delta[pos] += val
# A final cumsum gives the idx we want: [2, 3, 4, 8, 9, 10]
idxs = delta.cumsum(dim=0)
return idxs
def _read_binvox_header(f):
"""
Copied from meshrcnn codebase:
https://github.com/facebookresearch/meshrcnn/blob/master/shapenet/utils/binvox_torch.py#L99
Read binvox header and extract information regarding voxel sizes and translations
to original voxel coordinates.
Args:
f (str): A file pointer to the binvox file to read.
Returns:
size (int): size of voxel.
translation (tuple(float)): translation to original voxel coordinates.
scale (float): scale to original voxel coordinates.
"""
# First line of the header should be "#binvox 1"
line = f.readline().strip()
if line != b"#binvox 1":
raise ValueError("Invalid header (line 1)")
# Second line of the header should be "dim [int] [int] [int]"
# and all three int should be the same
line = f.readline().strip()
if not line.startswith(b"dim "):
raise ValueError("Invalid header (line 2)")
dims = line.split(b" ")
try:
dims = [int(d) for d in dims[1:]]
except ValueError:
raise ValueError("Invalid header (line 2)")
if len(dims) != 3 or dims[0] != dims[1] or dims[0] != dims[2]:
raise ValueError("Invalid header (line 2)")
size = dims[0]
# Third line of the header should be "translate [float] [float] [float]"
line = f.readline().strip()
if not line.startswith(b"translate "):
raise ValueError("Invalid header (line 3)")
translation = line.split(b" ")
if len(translation) != 4:
raise ValueError("Invalid header (line 3)")
try:
translation = tuple(float(t) for t in translation[1:])
except ValueError:
raise ValueError("Invalid header (line 3)")
# Fourth line of the header should be "scale [float]"
line = f.readline().strip()
if not line.startswith(b"scale "):
raise ValueError("Invalid header (line 4)")
line = line.split(b" ")
if not len(line) == 2:
raise ValueError("Invalid header (line 4)")
scale = float(line[1])
# Fifth line of the header should be "data"
line = f.readline().strip()
if not line == b"data":
raise ValueError("Invalid header (line 5)")
return size, translation, scale
def align_bbox(src, tgt):
"""
Copied from meshrcnn codebase:
https://github.com/facebookresearch/meshrcnn/blob/master/tools/preprocess_shapenet.py#L263
Return a copy of src points in the coordinate system of tgt by applying a
scale and shift along each coordinate axis to make the min / max values align.
Args:
src, tgt: Torch Tensor of shape (N, 3)
Returns:
out: Torch Tensor of shape (N, 3)
"""
if src.ndim != 2 or tgt.ndim != 2:
raise ValueError("Both src and tgt need to have dimensions of 2.")
if src.shape[-1] != 3 or tgt.shape[-1] != 3:
raise ValueError(
"Both src and tgt need to have sizes of 3 along the second dimension."
)
src_min = src.min(dim=0)[0]
src_max = src.max(dim=0)[0]
tgt_min = tgt.min(dim=0)[0]
tgt_max = tgt.max(dim=0)[0]
scale = (tgt_max - tgt_min) / (src_max - src_min)
shift = tgt_min - scale * src_min
out = scale * src + shift
return out
def voxelize(voxel_coords, P, V):
"""
Copied from meshrcnn codebase:
https://github.com/facebookresearch/meshrcnn/blob/master/tools/preprocess_shapenet.py#L284
but changing flip y to flip x.
Creating voxels of shape (D, D, D) from voxel_coords and projection matrix.
Args:
voxel_coords: FloatTensor of shape (V, 3) giving voxel's coordinates aligned to
the vertices.
P: FloatTensor of shape (4, 4) giving the projection matrix.
V: Voxel size of the output.
Returns:
voxels: Tensor of shape (D, D, D) giving the voxelized result.
"""
device = voxel_coords.device
voxel_coords = project_verts(voxel_coords, P)
# Using the actual zmin and zmax of the model is bad because we need them
# to perform the inverse transform, which transform voxels back into world
# space for refinement or evaluation. Instead we use an empirical min and
# max over the dataset; that way it is consistent for all images.
zmin = SHAPENET_MIN_ZMIN
zmax = SHAPENET_MAX_ZMAX
# Once we know zmin and zmax, we need to adjust the z coordinates so the
# range [zmin, zmax] instead runs from [-1, 1]
m = 2.0 / (zmax - zmin)
b = -2.0 * zmin / (zmax - zmin) - 1
voxel_coords[:, 2].mul_(m).add_(b)
voxel_coords[:, 0].mul_(-1) # Flip x
# Now voxels are in [-1, 1]^3; map to [0, V-1)^3
voxel_coords = 0.5 * (V - 1) * (voxel_coords + 1.0)
voxel_coords = voxel_coords.round().to(torch.int64)
valid = (0 <= voxel_coords) * (voxel_coords < V)
valid = valid[:, 0] * valid[:, 1] * valid[:, 2]
x, y, z = voxel_coords.unbind(dim=1)
x, y, z = x[valid], y[valid], z[valid]
voxels = torch.zeros(V, V, V, dtype=torch.uint8, device=device)
voxels[z, y, x] = 1
return voxels
def project_verts(verts, P, eps=1e-1):
"""
Copied from meshrcnn codebase:
https://github.com/facebookresearch/meshrcnn/blob/master/shapenet/utils/coords.py#L159
Project verticies using a 4x4 transformation matrix.
Args:
verts: FloatTensor of shape (N, V, 3) giving a batch of vertex positions or of
shape (V, 3) giving a single set of vertex positions.
P: FloatTensor of shape (N, 4, 4) giving projection matrices or of shape (4, 4)
giving a single projection matrix.
Returns:
verts_out: FloatTensor of shape (N, V, 3) giving vertex positions (x, y, z)
where verts_out[i] is the result of transforming verts[i] by P[i].
"""
# Handle unbatched inputs
singleton = False
if verts.dim() == 2:
assert P.dim() == 2
singleton = True
verts, P = verts[None], P[None]
N, V = verts.shape[0], verts.shape[1]
dtype, device = verts.dtype, verts.device
# Add an extra row of ones to the world-space coordinates of verts before
# multiplying by the projection matrix. We could avoid this allocation by
# instead multiplying by a 4x3 submatrix of the projectio matrix, then
# adding the remaining 4x1 vector. Not sure whether there will be much
# performance difference between the two.
ones = torch.ones(N, V, 1, dtype=dtype, device=device)
verts_hom = torch.cat([verts, ones], dim=2)
verts_cam_hom = torch.bmm(verts_hom, P.transpose(1, 2))
# Avoid division by zero by clamping the absolute value
w = verts_cam_hom[:, :, 3:]
w_sign = w.sign()
w_sign[w == 0] = 1
w = w_sign * w.abs().clamp(min=eps)
verts_proj = verts_cam_hom[:, :, :3] / w
if singleton:
return verts_proj[0]
return verts_proj
class BlenderCamera(CamerasBase):
"""
Camera for rendering objects with calibration matrices from the R2N2 dataset
(which uses Blender for rendering the views for each model).
"""
def __init__(self, R=r, T=t, K=k, device="cpu"):
"""
Args:
R: Rotation matrix of shape (N, 3, 3).
T: Translation matrix of shape (N, 3).
K: Intrinsic matrix of shape (N, 4, 4).
device: torch.device or str.
"""
# The initializer formats all inputs to torch tensors and broadcasts
# all the inputs to have the same batch dimension where necessary.
super().__init__(device=device, R=R, T=T, K=K)
def get_projection_transform(self, **kwargs) -> Transform3d:
transform = Transform3d(device=self.device)
transform._matrix = self.K.transpose(1, 2).contiguous() # pyre-ignore[16]
return transform
def render_cubified_voxels(
voxels: torch.Tensor, shader_type=HardPhongShader, device="cpu", **kwargs
):
"""
Use the Cubify operator to convert inputs voxels to a mesh and then render that mesh.
Args:
voxels: FloatTensor of shape (N, D, D, D) where N is the batch size and
D is the number of voxels along each dimension.
shader_type: shader_type: shader_type: Shader to use for rendering. Examples
include HardPhongShader (default), SoftPhongShader etc or any other type
of valid Shader class.
device: torch.device on which the tensors should be located.
**kwargs: Accepts any of the kwargs that the renderer supports.
Returns:
Batch of rendered images of shape (N, H, W, 3).
"""
cubified_voxels = cubify(voxels, CUBIFY_THRESH).to(device)
cubified_voxels.textures = TexturesVertex(
verts_features=torch.ones_like(cubified_voxels.verts_padded(), device=device)
)
cameras = BlenderCamera(device=device)
renderer = MeshRenderer(
rasterizer=MeshRasterizer(
cameras=cameras,
raster_settings=kwargs.get("raster_settings", RasterizationSettings()),
),
shader=shader_type(
device=device,
cameras=cameras,
lights=kwargs.get("lights", PointLights()).to(device),
),
)
return renderer(cubified_voxels)

View File

@ -1,8 +1,6 @@
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
import math
from typing import Dict, List from typing import Dict, List
import torch
from pytorch3d.structures import Meshes from pytorch3d.structures import Meshes
@ -33,78 +31,4 @@ def collate_batched_meshes(batch: List[Dict]):
collated_dict["mesh"] = Meshes( collated_dict["mesh"] = Meshes(
verts=collated_dict["verts"], faces=collated_dict["faces"] verts=collated_dict["verts"], faces=collated_dict["faces"]
) )
# If collate_batched_meshes receives R2N2 items with images and that
# all models have the same number of views V, stack the batches of
# views of each model into a new batch of shape (N, V, H, W, 3).
# Otherwise leave it as a list.
if "images" in collated_dict:
try:
collated_dict["images"] = torch.stack(collated_dict["images"])
except RuntimeError:
print(
"Models don't have the same number of views. Now returning "
"lists of images instead of batches."
)
# If collate_batched_meshes receives R2N2 items with camera calibration
# matrices and that all models have the same number of views V, stack each
# type of matrices into a new batch of shape (N, V, ...).
# Otherwise leave them as lists.
if all(x in collated_dict for x in ["R", "T", "K"]):
try:
collated_dict["R"] = torch.stack(collated_dict["R"]) # (N, V, 3, 3)
collated_dict["T"] = torch.stack(collated_dict["T"]) # (N, V, 3)
collated_dict["K"] = torch.stack(collated_dict["K"]) # (N, V, 4, 4)
except RuntimeError:
print(
"Models don't have the same number of views. Now returning "
"lists of calibration matrices instead of batches."
)
return collated_dict return collated_dict
def compute_extrinsic_matrix(azimuth, elevation, distance):
"""
Copied from meshrcnn codebase:
https://github.com/facebookresearch/meshrcnn/blob/master/shapenet/utils/coords.py#L96
Compute 4x4 extrinsic matrix that converts from homogenous world coordinates
to homogenous camera coordinates. We assume that the camera is looking at the
origin.
Used in R2N2 Dataset when computing calibration matrices.
Args:
azimuth: Rotation about the z-axis, in degrees.
elevation: Rotation above the xy-plane, in degrees.
distance: Distance from the origin.
Returns:
FloatTensor of shape (4, 4).
"""
azimuth, elevation, distance = float(azimuth), float(elevation), float(distance)
az_rad = -math.pi * azimuth / 180.0
el_rad = -math.pi * elevation / 180.0
sa = math.sin(az_rad)
ca = math.cos(az_rad)
se = math.sin(el_rad)
ce = math.cos(el_rad)
R_world2obj = torch.tensor(
[[ca * ce, sa * ce, -se], [-sa, ca, 0], [ca * se, sa * se, ce]]
)
R_obj2cam = torch.tensor([[0.0, 1.0, 0.0], [0.0, 0.0, 1.0], [1.0, 0.0, 0.0]])
R_world2cam = R_obj2cam.mm(R_world2obj)
cam_location = torch.tensor([[distance, 0, 0]]).t()
T_world2cam = -(R_obj2cam.mm(cam_location))
RT = torch.cat([R_world2cam, T_world2cam], dim=1)
RT = torch.cat([RT, torch.tensor([[0.0, 0, 0, 1]])])
# Georgia: For some reason I cannot fathom, when Blender loads a .obj file it
# rotates the model 90 degrees about the x axis. To compensate for this quirk we
# roll that rotation into the extrinsic matrix here
rot = torch.tensor([[1, 0, 0, 0], [0, 0, -1, 0], [0, 1, 0, 0], [0, 0, 0, 1]])
RT = RT.mm(rot.to(RT))
return RT

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

View File

@ -11,7 +11,12 @@ import numpy as np
import torch import torch
from common_testing import TestCaseMixin, load_rgb_image from common_testing import TestCaseMixin, load_rgb_image
from PIL import Image from PIL import Image
from pytorch3d.datasets import R2N2, BlenderCamera, collate_batched_meshes from pytorch3d.datasets import (
R2N2,
BlenderCamera,
collate_batched_R2N2,
render_cubified_voxels,
)
from pytorch3d.renderer import ( from pytorch3d.renderer import (
OpenGLPerspectiveCameras, OpenGLPerspectiveCameras,
PointLights, PointLights,
@ -62,8 +67,10 @@ class TestR2N2(TestCaseMixin, unittest.TestCase):
Test the loaded train split of R2N2 return items of the correct shapes and types. Also Test the loaded train split of R2N2 return items of the correct shapes and types. Also
check the first image returned is correct. check the first image returned is correct.
""" """
# Load dataset in the test split. # Load dataset in the train split.
r2n2_dataset = R2N2("test", SHAPENET_PATH, R2N2_PATH, SPLITS_PATH) r2n2_dataset = R2N2(
"test", SHAPENET_PATH, R2N2_PATH, SPLITS_PATH, return_voxels=True
)
# Check total number of objects in the dataset is correct. # Check total number of objects in the dataset is correct.
with open(SPLITS_PATH) as splits: with open(SPLITS_PATH) as splits:
@ -114,6 +121,10 @@ class TestR2N2(TestCaseMixin, unittest.TestCase):
self.assertEqual(r2n2_dataset[635]["images"].shape[0], 5) self.assertEqual(r2n2_dataset[635]["images"].shape[0], 5)
self.assertEqual(r2n2_dataset[8369]["images"].shape[0], 10) self.assertEqual(r2n2_dataset[8369]["images"].shape[0], 10)
# Check that the voxel tensor returned by __getitem__ has the correct shape.
self.assertEqual(r2n2_obj["voxels"].ndim, 4)
self.assertEqual(r2n2_obj["voxels"].shape, (24, 128, 128, 128))
def test_collate_models(self): def test_collate_models(self):
""" """
Test collate_batched_meshes returns items of the correct shapes and types. Test collate_batched_meshes returns items of the correct shapes and types.
@ -121,10 +132,12 @@ class TestR2N2(TestCaseMixin, unittest.TestCase):
the correct shapes and types are returned. the correct shapes and types are returned.
""" """
# Load dataset in the train split. # Load dataset in the train split.
r2n2_dataset = R2N2("val", SHAPENET_PATH, R2N2_PATH, SPLITS_PATH) r2n2_dataset = R2N2(
"val", SHAPENET_PATH, R2N2_PATH, SPLITS_PATH, return_voxels=True
)
# Randomly retrieve several objects from the dataset and collate them. # Randomly retrieve several objects from the dataset and collate them.
collated_meshes = collate_batched_meshes( collated_meshes = collate_batched_R2N2(
[r2n2_dataset[idx] for idx in torch.randint(len(r2n2_dataset), (6,))] [r2n2_dataset[idx] for idx in torch.randint(len(r2n2_dataset), (6,))]
) )
# Check the collated verts and faces have the correct shapes. # Check the collated verts and faces have the correct shapes.
@ -145,7 +158,7 @@ class TestR2N2(TestCaseMixin, unittest.TestCase):
# in batch have the correct shape. # in batch have the correct shape.
batch_size = 12 batch_size = 12
r2n2_loader = DataLoader( r2n2_loader = DataLoader(
r2n2_dataset, batch_size=batch_size, collate_fn=collate_batched_meshes r2n2_dataset, batch_size=batch_size, collate_fn=collate_batched_R2N2
) )
it = iter(r2n2_loader) it = iter(r2n2_loader)
object_batch = next(it) object_batch = next(it)
@ -158,6 +171,7 @@ class TestR2N2(TestCaseMixin, unittest.TestCase):
self.assertEqual(object_batch["R"].shape[0], batch_size) self.assertEqual(object_batch["R"].shape[0], batch_size)
self.assertEqual(object_batch["T"].shape[0], batch_size) self.assertEqual(object_batch["T"].shape[0], batch_size)
self.assertEqual(object_batch["K"].shape[0], batch_size) self.assertEqual(object_batch["K"].shape[0], batch_size)
self.assertEqual(len(object_batch["voxels"]), batch_size)
def test_catch_render_arg_errors(self): def test_catch_render_arg_errors(self):
""" """
@ -338,3 +352,24 @@ class TestR2N2(TestCaseMixin, unittest.TestCase):
"test_r2n2_render_with_blender_calibrations_%s.png" % idx, DATA_DIR "test_r2n2_render_with_blender_calibrations_%s.png" % idx, DATA_DIR
) )
self.assertClose(r2n2_batch_rgb, image_ref, atol=0.05) self.assertClose(r2n2_batch_rgb, image_ref, atol=0.05)
def test_render_voxels(self):
"""
Test rendering meshes formed from voxels.
"""
# Set up device and seed for random selections.
device = torch.device("cuda:0")
# Load dataset in the train split with only a single view returned for each model.
r2n2_dataset = R2N2(
"train", SHAPENET_PATH, R2N2_PATH, SPLITS_PATH, return_voxels=True
)
r2n2_model = r2n2_dataset[6, [5]]
vox_render = render_cubified_voxels(r2n2_model["voxels"], device=device)
vox_render_rgb = vox_render[0, ..., :3].squeeze().cpu()
if DEBUG:
Image.fromarray((vox_render_rgb.numpy() * 255).astype(np.uint8)).save(
DATA_DIR / ("DEBUG_r2n2_voxel_to_mesh_render.png")
)
image_ref = load_rgb_image("test_r2n2_voxel_to_mesh_render.png", DATA_DIR)
self.assertClose(vox_render_rgb, image_ref, atol=0.05)