mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 03:42:50 +08:00
Single directional chamfer distance and non-absolute cosine similarity
Summary: Single directional chamfer distance and option to use non-absolute cosine similarity Reviewed By: bottler Differential Revision: D46593980 fbshipit-source-id: b2e591706a0cdde1c2d361614cecebb84a581433
This commit is contained in:
parent
573a42cd5f
commit
5ffeb4d580
@ -68,6 +68,94 @@ def _handle_pointcloud_input(
|
||||
return X, lengths, normals
|
||||
|
||||
|
||||
def _chamfer_distance_single_direction(
|
||||
x,
|
||||
y,
|
||||
x_lengths,
|
||||
y_lengths,
|
||||
x_normals,
|
||||
y_normals,
|
||||
weights,
|
||||
batch_reduction: Union[str, None],
|
||||
point_reduction: str,
|
||||
norm: int,
|
||||
abs_cosine: bool,
|
||||
):
|
||||
return_normals = x_normals is not None and y_normals is not None
|
||||
|
||||
N, P1, D = x.shape
|
||||
|
||||
# Check if inputs are heterogeneous and create a lengths mask.
|
||||
is_x_heterogeneous = (x_lengths != P1).any()
|
||||
x_mask = (
|
||||
torch.arange(P1, device=x.device)[None] >= x_lengths[:, None]
|
||||
) # shape [N, P1]
|
||||
if y.shape[0] != N or y.shape[2] != D:
|
||||
raise ValueError("y does not have the correct shape.")
|
||||
if weights is not None:
|
||||
if weights.size(0) != N:
|
||||
raise ValueError("weights must be of shape (N,).")
|
||||
if not (weights >= 0).all():
|
||||
raise ValueError("weights cannot be negative.")
|
||||
if weights.sum() == 0.0:
|
||||
weights = weights.view(N, 1)
|
||||
if batch_reduction in ["mean", "sum"]:
|
||||
return (
|
||||
(x.sum((1, 2)) * weights).sum() * 0.0,
|
||||
(x.sum((1, 2)) * weights).sum() * 0.0,
|
||||
)
|
||||
return ((x.sum((1, 2)) * weights) * 0.0, (x.sum((1, 2)) * weights) * 0.0)
|
||||
|
||||
cham_norm_x = x.new_zeros(())
|
||||
|
||||
x_nn = knn_points(x, y, lengths1=x_lengths, lengths2=y_lengths, norm=norm, K=1)
|
||||
cham_x = x_nn.dists[..., 0] # (N, P1)
|
||||
|
||||
if is_x_heterogeneous:
|
||||
cham_x[x_mask] = 0.0
|
||||
|
||||
if weights is not None:
|
||||
cham_x *= weights.view(N, 1)
|
||||
|
||||
if return_normals:
|
||||
# Gather the normals using the indices and keep only value for k=0
|
||||
x_normals_near = knn_gather(y_normals, x_nn.idx, y_lengths)[..., 0, :]
|
||||
|
||||
cosine_sim = F.cosine_similarity(x_normals, x_normals_near, dim=2, eps=1e-6)
|
||||
# If abs_cosine, ignore orientation and take the absolute value of the cosine sim.
|
||||
cham_norm_x = 1 - (torch.abs(cosine_sim) if abs_cosine else cosine_sim)
|
||||
|
||||
if is_x_heterogeneous:
|
||||
cham_norm_x[x_mask] = 0.0
|
||||
|
||||
if weights is not None:
|
||||
cham_norm_x *= weights.view(N, 1)
|
||||
cham_norm_x = cham_norm_x.sum(1) # (N,)
|
||||
|
||||
# Apply point reduction
|
||||
cham_x = cham_x.sum(1) # (N,)
|
||||
if point_reduction == "mean":
|
||||
x_lengths_clamped = x_lengths.clamp(min=1)
|
||||
cham_x /= x_lengths_clamped
|
||||
if return_normals:
|
||||
cham_norm_x /= x_lengths_clamped
|
||||
|
||||
if batch_reduction is not None:
|
||||
# batch_reduction == "sum"
|
||||
cham_x = cham_x.sum()
|
||||
if return_normals:
|
||||
cham_norm_x = cham_norm_x.sum()
|
||||
if batch_reduction == "mean":
|
||||
div = weights.sum() if weights is not None else max(N, 1)
|
||||
cham_x /= div
|
||||
if return_normals:
|
||||
cham_norm_x /= div
|
||||
|
||||
cham_dist = cham_x
|
||||
cham_normals = cham_norm_x if return_normals else None
|
||||
return cham_dist, cham_normals
|
||||
|
||||
|
||||
def chamfer_distance(
|
||||
x,
|
||||
y,
|
||||
@ -79,6 +167,8 @@ def chamfer_distance(
|
||||
batch_reduction: Union[str, None] = "mean",
|
||||
point_reduction: str = "mean",
|
||||
norm: int = 2,
|
||||
single_directional: bool = False,
|
||||
abs_cosine: bool = True,
|
||||
):
|
||||
"""
|
||||
Chamfer distance between two pointclouds x and y.
|
||||
@ -103,6 +193,14 @@ def chamfer_distance(
|
||||
point_reduction: Reduction operation to apply for the loss across the
|
||||
points, can be one of ["mean", "sum"].
|
||||
norm: int indicates the norm used for the distance. Supports 1 for L1 and 2 for L2.
|
||||
single_directional: If False (default), loss comes from both the distance between
|
||||
each point in x and its nearest neighbor in y and each point in y and its nearest
|
||||
neighbor in x. If True, loss is the distance between each point in x and its
|
||||
nearest neighbor in y.
|
||||
abs_cosine: If False, loss_normals is from one minus the cosine similarity.
|
||||
If True (default), loss_normals is from one minus the absolute value of the
|
||||
cosine similarity, which means that exactly opposite normals are considered
|
||||
equivalent to exactly matching normals, i.e. sign does not matter.
|
||||
|
||||
Returns:
|
||||
2-element tuple containing
|
||||
@ -112,116 +210,45 @@ def chamfer_distance(
|
||||
- **loss_normals**: Tensor giving the reduced cosine distance of normals
|
||||
between pointclouds in x and pointclouds in y. Returns None if
|
||||
x_normals and y_normals are None.
|
||||
|
||||
"""
|
||||
_validate_chamfer_reduction_inputs(batch_reduction, point_reduction)
|
||||
|
||||
if not ((norm == 1) or (norm == 2)):
|
||||
raise ValueError("Support for 1 or 2 norm.")
|
||||
|
||||
x, x_lengths, x_normals = _handle_pointcloud_input(x, x_lengths, x_normals)
|
||||
y, y_lengths, y_normals = _handle_pointcloud_input(y, y_lengths, y_normals)
|
||||
|
||||
return_normals = x_normals is not None and y_normals is not None
|
||||
|
||||
N, P1, D = x.shape
|
||||
P2 = y.shape[1]
|
||||
|
||||
# Check if inputs are heterogeneous and create a lengths mask.
|
||||
is_x_heterogeneous = (x_lengths != P1).any()
|
||||
is_y_heterogeneous = (y_lengths != P2).any()
|
||||
x_mask = (
|
||||
torch.arange(P1, device=x.device)[None] >= x_lengths[:, None]
|
||||
) # shape [N, P1]
|
||||
y_mask = (
|
||||
torch.arange(P2, device=y.device)[None] >= y_lengths[:, None]
|
||||
) # shape [N, P2]
|
||||
|
||||
if y.shape[0] != N or y.shape[2] != D:
|
||||
raise ValueError("y does not have the correct shape.")
|
||||
if weights is not None:
|
||||
if weights.size(0) != N:
|
||||
raise ValueError("weights must be of shape (N,).")
|
||||
if not (weights >= 0).all():
|
||||
raise ValueError("weights cannot be negative.")
|
||||
if weights.sum() == 0.0:
|
||||
weights = weights.view(N, 1)
|
||||
if batch_reduction in ["mean", "sum"]:
|
||||
return (
|
||||
(x.sum((1, 2)) * weights).sum() * 0.0,
|
||||
(x.sum((1, 2)) * weights).sum() * 0.0,
|
||||
)
|
||||
return ((x.sum((1, 2)) * weights) * 0.0, (x.sum((1, 2)) * weights) * 0.0)
|
||||
|
||||
cham_norm_x = x.new_zeros(())
|
||||
cham_norm_y = x.new_zeros(())
|
||||
|
||||
x_nn = knn_points(x, y, lengths1=x_lengths, lengths2=y_lengths, norm=norm, K=1)
|
||||
y_nn = knn_points(y, x, lengths1=y_lengths, lengths2=x_lengths, norm=norm, K=1)
|
||||
|
||||
cham_x = x_nn.dists[..., 0] # (N, P1)
|
||||
cham_y = y_nn.dists[..., 0] # (N, P2)
|
||||
|
||||
if is_x_heterogeneous:
|
||||
cham_x[x_mask] = 0.0
|
||||
if is_y_heterogeneous:
|
||||
cham_y[y_mask] = 0.0
|
||||
|
||||
if weights is not None:
|
||||
cham_x *= weights.view(N, 1)
|
||||
cham_y *= weights.view(N, 1)
|
||||
|
||||
if return_normals:
|
||||
# Gather the normals using the indices and keep only value for k=0
|
||||
x_normals_near = knn_gather(y_normals, x_nn.idx, y_lengths)[..., 0, :]
|
||||
y_normals_near = knn_gather(x_normals, y_nn.idx, x_lengths)[..., 0, :]
|
||||
|
||||
cham_norm_x = 1 - torch.abs(
|
||||
F.cosine_similarity(x_normals, x_normals_near, dim=2, eps=1e-6)
|
||||
cham_x, cham_norm_x = _chamfer_distance_single_direction(
|
||||
x,
|
||||
y,
|
||||
x_lengths,
|
||||
y_lengths,
|
||||
x_normals,
|
||||
y_normals,
|
||||
weights,
|
||||
batch_reduction,
|
||||
point_reduction,
|
||||
norm,
|
||||
abs_cosine,
|
||||
)
|
||||
if single_directional:
|
||||
return cham_x, cham_norm_x
|
||||
else:
|
||||
cham_y, cham_norm_y = _chamfer_distance_single_direction(
|
||||
y,
|
||||
x,
|
||||
y_lengths,
|
||||
x_lengths,
|
||||
y_normals,
|
||||
x_normals,
|
||||
weights,
|
||||
batch_reduction,
|
||||
point_reduction,
|
||||
norm,
|
||||
abs_cosine,
|
||||
)
|
||||
cham_norm_y = 1 - torch.abs(
|
||||
F.cosine_similarity(y_normals, y_normals_near, dim=2, eps=1e-6)
|
||||
return (
|
||||
cham_x + cham_y,
|
||||
(cham_norm_x + cham_norm_y) if cham_norm_x is not None else None,
|
||||
)
|
||||
|
||||
if is_x_heterogeneous:
|
||||
cham_norm_x[x_mask] = 0.0
|
||||
if is_y_heterogeneous:
|
||||
cham_norm_y[y_mask] = 0.0
|
||||
|
||||
if weights is not None:
|
||||
cham_norm_x *= weights.view(N, 1)
|
||||
cham_norm_y *= weights.view(N, 1)
|
||||
|
||||
# Apply point reduction
|
||||
cham_x = cham_x.sum(1) # (N,)
|
||||
cham_y = cham_y.sum(1) # (N,)
|
||||
if return_normals:
|
||||
cham_norm_x = cham_norm_x.sum(1) # (N,)
|
||||
cham_norm_y = cham_norm_y.sum(1) # (N,)
|
||||
if point_reduction == "mean":
|
||||
x_lengths_clamped = x_lengths.clamp(min=1)
|
||||
y_lengths_clamped = y_lengths.clamp(min=1)
|
||||
cham_x /= x_lengths_clamped
|
||||
cham_y /= y_lengths_clamped
|
||||
if return_normals:
|
||||
cham_norm_x /= x_lengths_clamped
|
||||
cham_norm_y /= y_lengths_clamped
|
||||
|
||||
if batch_reduction is not None:
|
||||
# batch_reduction == "sum"
|
||||
cham_x = cham_x.sum()
|
||||
cham_y = cham_y.sum()
|
||||
if return_normals:
|
||||
cham_norm_x = cham_norm_x.sum()
|
||||
cham_norm_y = cham_norm_y.sum()
|
||||
if batch_reduction == "mean":
|
||||
div = weights.sum() if weights is not None else max(N, 1)
|
||||
cham_x /= div
|
||||
cham_y /= div
|
||||
if return_normals:
|
||||
cham_norm_x /= div
|
||||
cham_norm_y /= div
|
||||
|
||||
cham_dist = cham_x + cham_y
|
||||
cham_normals = cham_norm_x + cham_norm_y if return_normals else None
|
||||
|
||||
return cham_dist, cham_normals
|
||||
|
@ -88,7 +88,9 @@ class TestChamfer(TestCaseMixin, unittest.TestCase):
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def chamfer_distance_naive_pointclouds(p1, p2, norm: int = 2, device="cpu"):
|
||||
def chamfer_distance_naive_pointclouds(
|
||||
p1, p2, norm: int = 2, device="cpu", abs_cosine=True
|
||||
):
|
||||
"""
|
||||
Naive iterative implementation of nearest neighbor and chamfer distance.
|
||||
x and y are assumed to be pointclouds objects with points and optionally normals.
|
||||
@ -146,17 +148,20 @@ class TestChamfer(TestCaseMixin, unittest.TestCase):
|
||||
if return_normals:
|
||||
x_index = dist.argmin(2).view(N, P1, 1).expand(N, P1, 3)
|
||||
y_index = dist.argmin(1).view(N, P2, 1).expand(N, P2, 3)
|
||||
lnorm1 = 1 - torch.abs(
|
||||
F.cosine_similarity(
|
||||
x_normals, y_normals.gather(1, x_index), dim=2, eps=1e-6
|
||||
)
|
||||
cosine_sim1 = F.cosine_similarity(
|
||||
x_normals, y_normals.gather(1, x_index), dim=2, eps=1e-6
|
||||
)
|
||||
lnorm2 = 1 - torch.abs(
|
||||
F.cosine_similarity(
|
||||
y_normals, x_normals.gather(1, y_index), dim=2, eps=1e-6
|
||||
)
|
||||
cosine_sim2 = F.cosine_similarity(
|
||||
y_normals, x_normals.gather(1, y_index), dim=2, eps=1e-6
|
||||
)
|
||||
|
||||
if abs_cosine:
|
||||
lnorm1 = 1 - torch.abs(cosine_sim1)
|
||||
lnorm2 = 1 - torch.abs(cosine_sim2)
|
||||
else:
|
||||
lnorm1 = 1 - cosine_sim1
|
||||
lnorm2 = 1 - cosine_sim2
|
||||
|
||||
if is_x_heterogeneous:
|
||||
lnorm1[x_mask] = 0.0
|
||||
if is_y_heterogeneous:
|
||||
@ -167,7 +172,9 @@ class TestChamfer(TestCaseMixin, unittest.TestCase):
|
||||
return loss, lnorm
|
||||
|
||||
@staticmethod
|
||||
def chamfer_distance_naive(x, y, x_normals=None, y_normals=None, norm: int = 2):
|
||||
def chamfer_distance_naive(
|
||||
x, y, x_normals=None, y_normals=None, norm: int = 2, abs_cosine=True
|
||||
):
|
||||
"""
|
||||
Naive iterative implementation of nearest neighbor and chamfer distance.
|
||||
Returns lists of the unreduced loss and loss_normals. This naive
|
||||
@ -200,16 +207,21 @@ class TestChamfer(TestCaseMixin, unittest.TestCase):
|
||||
if return_normals:
|
||||
x_index = dist.argmin(2).view(N, P1, 1).expand(N, P1, 3)
|
||||
y_index = dist.argmin(1).view(N, P2, 1).expand(N, P2, 3)
|
||||
lnorm1 = 1 - torch.abs(
|
||||
F.cosine_similarity(
|
||||
x_normals, y_normals.gather(1, x_index), dim=2, eps=1e-6
|
||||
)
|
||||
|
||||
cosine_sim1 = F.cosine_similarity(
|
||||
x_normals, y_normals.gather(1, x_index), dim=2, eps=1e-6
|
||||
)
|
||||
lnorm2 = 1 - torch.abs(
|
||||
F.cosine_similarity(
|
||||
y_normals, x_normals.gather(1, y_index), dim=2, eps=1e-6
|
||||
)
|
||||
cosine_sim2 = F.cosine_similarity(
|
||||
y_normals, x_normals.gather(1, y_index), dim=2, eps=1e-6
|
||||
)
|
||||
|
||||
if abs_cosine:
|
||||
lnorm1 = 1 - torch.abs(cosine_sim1)
|
||||
lnorm2 = 1 - torch.abs(cosine_sim2)
|
||||
else:
|
||||
lnorm1 = 1 - cosine_sim1
|
||||
lnorm2 = 1 - cosine_sim2
|
||||
|
||||
lnorm = [lnorm1, lnorm2] # [(N, P1), (N, P2)]
|
||||
|
||||
return loss, lnorm
|
||||
@ -323,6 +335,80 @@ class TestChamfer(TestCaseMixin, unittest.TestCase):
|
||||
y_lengths,
|
||||
)
|
||||
|
||||
def test_single_directional_chamfer_vs_naive_pointcloud(self):
|
||||
"""
|
||||
Test the single directional settings for chamfer_distance
|
||||
(point reduction = "mean" and batch_reduction="mean") but with heterogeneous
|
||||
pointclouds as input. Compare with the naive implementation of chamfer
|
||||
which supports heterogeneous pointcloud objects.
|
||||
"""
|
||||
N, max_P1, max_P2 = 3, 70, 70
|
||||
device = get_random_cuda_device()
|
||||
|
||||
for norm in [1, 2]:
|
||||
for abs_cosine in [True, False]:
|
||||
points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device)
|
||||
weights = points_normals.weights
|
||||
x_lengths = points_normals.p1_lengths
|
||||
y_lengths = points_normals.p2_lengths
|
||||
|
||||
# Chamfer with tensors as input for heterogeneous pointclouds.
|
||||
cham_tensor, norm_tensor = chamfer_distance(
|
||||
points_normals.p1,
|
||||
points_normals.p2,
|
||||
x_normals=points_normals.n1,
|
||||
y_normals=points_normals.n2,
|
||||
x_lengths=points_normals.p1_lengths,
|
||||
y_lengths=points_normals.p2_lengths,
|
||||
weights=weights,
|
||||
norm=norm,
|
||||
single_directional=True,
|
||||
abs_cosine=abs_cosine,
|
||||
)
|
||||
|
||||
# Chamfer with pointclouds as input.
|
||||
(
|
||||
pred_loss,
|
||||
pred_norm_loss,
|
||||
) = TestChamfer.chamfer_distance_naive_pointclouds(
|
||||
points_normals.cloud1,
|
||||
points_normals.cloud2,
|
||||
norm=norm,
|
||||
device=device,
|
||||
abs_cosine=abs_cosine,
|
||||
)
|
||||
|
||||
# Mean reduction point loss.
|
||||
pred_loss[0] *= weights.view(N, 1)
|
||||
pred_loss_mean = pred_loss[0].sum(1) / x_lengths
|
||||
pred_loss_mean = pred_loss_mean.sum()
|
||||
pred_loss_mean /= weights.sum()
|
||||
|
||||
# Mean reduction norm loss.
|
||||
pred_norm_loss[0] *= weights.view(N, 1)
|
||||
pred_norm_loss_mean = pred_norm_loss[0].sum(1) / x_lengths
|
||||
pred_norm_loss_mean = pred_norm_loss_mean.sum() / weights.sum()
|
||||
|
||||
self.assertClose(pred_loss_mean, cham_tensor)
|
||||
self.assertClose(pred_norm_loss_mean, norm_tensor)
|
||||
|
||||
self._check_gradients(
|
||||
cham_tensor,
|
||||
norm_tensor,
|
||||
pred_loss_mean,
|
||||
pred_norm_loss_mean,
|
||||
points_normals.cloud1.points_list(),
|
||||
points_normals.p1,
|
||||
points_normals.cloud2.points_list(),
|
||||
points_normals.p2,
|
||||
points_normals.cloud1.normals_list(),
|
||||
points_normals.n1,
|
||||
points_normals.cloud2.normals_list(),
|
||||
points_normals.n2,
|
||||
x_lengths,
|
||||
y_lengths,
|
||||
)
|
||||
|
||||
def test_chamfer_pointcloud_object_withnormals(self):
|
||||
N = 5
|
||||
P1, P2 = 100, 100
|
||||
@ -485,6 +571,53 @@ class TestChamfer(TestCaseMixin, unittest.TestCase):
|
||||
loss, loss_norm, pred_loss_mean, pred_loss_norm_mean, p1, p11, p2, p22
|
||||
)
|
||||
|
||||
def test_single_direction_chamfer_point_reduction_mean(self):
|
||||
"""
|
||||
Compare output of vectorized chamfer loss with naive implementation
|
||||
for point_reduction = "mean" and batch_reduction = None.
|
||||
"""
|
||||
N, max_P1, max_P2 = 7, 10, 18
|
||||
device = get_random_cuda_device()
|
||||
points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device)
|
||||
p1 = points_normals.p1
|
||||
p2 = points_normals.p2
|
||||
p1_normals = points_normals.n1
|
||||
p2_normals = points_normals.n2
|
||||
weights = points_normals.weights
|
||||
p11 = p1.detach().clone()
|
||||
p22 = p2.detach().clone()
|
||||
p11.requires_grad = True
|
||||
p22.requires_grad = True
|
||||
P1 = p1.shape[1]
|
||||
|
||||
pred_loss, pred_loss_norm = TestChamfer.chamfer_distance_naive(
|
||||
p1, p2, x_normals=p1_normals, y_normals=p2_normals
|
||||
)
|
||||
|
||||
# point_reduction = "mean".
|
||||
loss, loss_norm = chamfer_distance(
|
||||
p11,
|
||||
p22,
|
||||
x_normals=p1_normals,
|
||||
y_normals=p2_normals,
|
||||
weights=weights,
|
||||
batch_reduction=None,
|
||||
point_reduction="mean",
|
||||
single_directional=True,
|
||||
)
|
||||
pred_loss_mean = pred_loss[0].sum(1) / P1
|
||||
pred_loss_mean *= weights
|
||||
self.assertClose(loss, pred_loss_mean)
|
||||
|
||||
pred_loss_norm_mean = pred_loss_norm[0].sum(1) / P1
|
||||
pred_loss_norm_mean *= weights
|
||||
self.assertClose(loss_norm, pred_loss_norm_mean)
|
||||
|
||||
# Check gradients
|
||||
self._check_gradients(
|
||||
loss, loss_norm, pred_loss_mean, pred_loss_norm_mean, p1, p11, p2, p22
|
||||
)
|
||||
|
||||
def test_chamfer_point_reduction_sum(self):
|
||||
"""
|
||||
Compare output of vectorized chamfer loss with naive implementation
|
||||
@ -529,6 +662,51 @@ class TestChamfer(TestCaseMixin, unittest.TestCase):
|
||||
loss, loss_norm, pred_loss_sum, pred_loss_norm_sum, p1, p11, p2, p22
|
||||
)
|
||||
|
||||
def test_single_directional_chamfer_point_reduction_sum(self):
|
||||
"""
|
||||
Compare output of vectorized single directional chamfer loss with naive implementation
|
||||
for point_reduction = "sum" and batch_reduction = None.
|
||||
"""
|
||||
N, P1, P2 = 7, 10, 18
|
||||
device = get_random_cuda_device()
|
||||
points_normals = TestChamfer.init_pointclouds(N, P1, P2, device)
|
||||
p1 = points_normals.p1
|
||||
p2 = points_normals.p2
|
||||
p1_normals = points_normals.n1
|
||||
p2_normals = points_normals.n2
|
||||
weights = points_normals.weights
|
||||
p11 = p1.detach().clone()
|
||||
p22 = p2.detach().clone()
|
||||
p11.requires_grad = True
|
||||
p22.requires_grad = True
|
||||
|
||||
pred_loss, pred_loss_norm = TestChamfer.chamfer_distance_naive(
|
||||
p1, p2, x_normals=p1_normals, y_normals=p2_normals
|
||||
)
|
||||
|
||||
loss, loss_norm = chamfer_distance(
|
||||
p11,
|
||||
p22,
|
||||
x_normals=p1_normals,
|
||||
y_normals=p2_normals,
|
||||
weights=weights,
|
||||
batch_reduction=None,
|
||||
point_reduction="sum",
|
||||
single_directional=True,
|
||||
)
|
||||
pred_loss_sum = pred_loss[0].sum(1)
|
||||
pred_loss_sum *= weights
|
||||
self.assertClose(loss, pred_loss_sum)
|
||||
|
||||
pred_loss_norm_sum = pred_loss_norm[0].sum(1)
|
||||
pred_loss_norm_sum *= weights
|
||||
self.assertClose(loss_norm, pred_loss_norm_sum)
|
||||
|
||||
# Check gradients
|
||||
self._check_gradients(
|
||||
loss, loss_norm, pred_loss_sum, pred_loss_norm_sum, p1, p11, p2, p22
|
||||
)
|
||||
|
||||
def _check_gradients(
|
||||
self,
|
||||
loss,
|
||||
|
Loading…
x
Reference in New Issue
Block a user