mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2026-01-17 03:40:34 +08:00
Single directional chamfer distance and non-absolute cosine similarity
Summary: Single directional chamfer distance and option to use non-absolute cosine similarity Reviewed By: bottler Differential Revision: D46593980 fbshipit-source-id: b2e591706a0cdde1c2d361614cecebb84a581433
This commit is contained in:
committed by
Facebook GitHub Bot
parent
573a42cd5f
commit
5ffeb4d580
@@ -88,7 +88,9 @@ class TestChamfer(TestCaseMixin, unittest.TestCase):
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def chamfer_distance_naive_pointclouds(p1, p2, norm: int = 2, device="cpu"):
|
||||
def chamfer_distance_naive_pointclouds(
|
||||
p1, p2, norm: int = 2, device="cpu", abs_cosine=True
|
||||
):
|
||||
"""
|
||||
Naive iterative implementation of nearest neighbor and chamfer distance.
|
||||
x and y are assumed to be pointclouds objects with points and optionally normals.
|
||||
@@ -146,17 +148,20 @@ class TestChamfer(TestCaseMixin, unittest.TestCase):
|
||||
if return_normals:
|
||||
x_index = dist.argmin(2).view(N, P1, 1).expand(N, P1, 3)
|
||||
y_index = dist.argmin(1).view(N, P2, 1).expand(N, P2, 3)
|
||||
lnorm1 = 1 - torch.abs(
|
||||
F.cosine_similarity(
|
||||
x_normals, y_normals.gather(1, x_index), dim=2, eps=1e-6
|
||||
)
|
||||
cosine_sim1 = F.cosine_similarity(
|
||||
x_normals, y_normals.gather(1, x_index), dim=2, eps=1e-6
|
||||
)
|
||||
lnorm2 = 1 - torch.abs(
|
||||
F.cosine_similarity(
|
||||
y_normals, x_normals.gather(1, y_index), dim=2, eps=1e-6
|
||||
)
|
||||
cosine_sim2 = F.cosine_similarity(
|
||||
y_normals, x_normals.gather(1, y_index), dim=2, eps=1e-6
|
||||
)
|
||||
|
||||
if abs_cosine:
|
||||
lnorm1 = 1 - torch.abs(cosine_sim1)
|
||||
lnorm2 = 1 - torch.abs(cosine_sim2)
|
||||
else:
|
||||
lnorm1 = 1 - cosine_sim1
|
||||
lnorm2 = 1 - cosine_sim2
|
||||
|
||||
if is_x_heterogeneous:
|
||||
lnorm1[x_mask] = 0.0
|
||||
if is_y_heterogeneous:
|
||||
@@ -167,7 +172,9 @@ class TestChamfer(TestCaseMixin, unittest.TestCase):
|
||||
return loss, lnorm
|
||||
|
||||
@staticmethod
|
||||
def chamfer_distance_naive(x, y, x_normals=None, y_normals=None, norm: int = 2):
|
||||
def chamfer_distance_naive(
|
||||
x, y, x_normals=None, y_normals=None, norm: int = 2, abs_cosine=True
|
||||
):
|
||||
"""
|
||||
Naive iterative implementation of nearest neighbor and chamfer distance.
|
||||
Returns lists of the unreduced loss and loss_normals. This naive
|
||||
@@ -200,16 +207,21 @@ class TestChamfer(TestCaseMixin, unittest.TestCase):
|
||||
if return_normals:
|
||||
x_index = dist.argmin(2).view(N, P1, 1).expand(N, P1, 3)
|
||||
y_index = dist.argmin(1).view(N, P2, 1).expand(N, P2, 3)
|
||||
lnorm1 = 1 - torch.abs(
|
||||
F.cosine_similarity(
|
||||
x_normals, y_normals.gather(1, x_index), dim=2, eps=1e-6
|
||||
)
|
||||
|
||||
cosine_sim1 = F.cosine_similarity(
|
||||
x_normals, y_normals.gather(1, x_index), dim=2, eps=1e-6
|
||||
)
|
||||
lnorm2 = 1 - torch.abs(
|
||||
F.cosine_similarity(
|
||||
y_normals, x_normals.gather(1, y_index), dim=2, eps=1e-6
|
||||
)
|
||||
cosine_sim2 = F.cosine_similarity(
|
||||
y_normals, x_normals.gather(1, y_index), dim=2, eps=1e-6
|
||||
)
|
||||
|
||||
if abs_cosine:
|
||||
lnorm1 = 1 - torch.abs(cosine_sim1)
|
||||
lnorm2 = 1 - torch.abs(cosine_sim2)
|
||||
else:
|
||||
lnorm1 = 1 - cosine_sim1
|
||||
lnorm2 = 1 - cosine_sim2
|
||||
|
||||
lnorm = [lnorm1, lnorm2] # [(N, P1), (N, P2)]
|
||||
|
||||
return loss, lnorm
|
||||
@@ -323,6 +335,80 @@ class TestChamfer(TestCaseMixin, unittest.TestCase):
|
||||
y_lengths,
|
||||
)
|
||||
|
||||
def test_single_directional_chamfer_vs_naive_pointcloud(self):
|
||||
"""
|
||||
Test the single directional settings for chamfer_distance
|
||||
(point reduction = "mean" and batch_reduction="mean") but with heterogeneous
|
||||
pointclouds as input. Compare with the naive implementation of chamfer
|
||||
which supports heterogeneous pointcloud objects.
|
||||
"""
|
||||
N, max_P1, max_P2 = 3, 70, 70
|
||||
device = get_random_cuda_device()
|
||||
|
||||
for norm in [1, 2]:
|
||||
for abs_cosine in [True, False]:
|
||||
points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device)
|
||||
weights = points_normals.weights
|
||||
x_lengths = points_normals.p1_lengths
|
||||
y_lengths = points_normals.p2_lengths
|
||||
|
||||
# Chamfer with tensors as input for heterogeneous pointclouds.
|
||||
cham_tensor, norm_tensor = chamfer_distance(
|
||||
points_normals.p1,
|
||||
points_normals.p2,
|
||||
x_normals=points_normals.n1,
|
||||
y_normals=points_normals.n2,
|
||||
x_lengths=points_normals.p1_lengths,
|
||||
y_lengths=points_normals.p2_lengths,
|
||||
weights=weights,
|
||||
norm=norm,
|
||||
single_directional=True,
|
||||
abs_cosine=abs_cosine,
|
||||
)
|
||||
|
||||
# Chamfer with pointclouds as input.
|
||||
(
|
||||
pred_loss,
|
||||
pred_norm_loss,
|
||||
) = TestChamfer.chamfer_distance_naive_pointclouds(
|
||||
points_normals.cloud1,
|
||||
points_normals.cloud2,
|
||||
norm=norm,
|
||||
device=device,
|
||||
abs_cosine=abs_cosine,
|
||||
)
|
||||
|
||||
# Mean reduction point loss.
|
||||
pred_loss[0] *= weights.view(N, 1)
|
||||
pred_loss_mean = pred_loss[0].sum(1) / x_lengths
|
||||
pred_loss_mean = pred_loss_mean.sum()
|
||||
pred_loss_mean /= weights.sum()
|
||||
|
||||
# Mean reduction norm loss.
|
||||
pred_norm_loss[0] *= weights.view(N, 1)
|
||||
pred_norm_loss_mean = pred_norm_loss[0].sum(1) / x_lengths
|
||||
pred_norm_loss_mean = pred_norm_loss_mean.sum() / weights.sum()
|
||||
|
||||
self.assertClose(pred_loss_mean, cham_tensor)
|
||||
self.assertClose(pred_norm_loss_mean, norm_tensor)
|
||||
|
||||
self._check_gradients(
|
||||
cham_tensor,
|
||||
norm_tensor,
|
||||
pred_loss_mean,
|
||||
pred_norm_loss_mean,
|
||||
points_normals.cloud1.points_list(),
|
||||
points_normals.p1,
|
||||
points_normals.cloud2.points_list(),
|
||||
points_normals.p2,
|
||||
points_normals.cloud1.normals_list(),
|
||||
points_normals.n1,
|
||||
points_normals.cloud2.normals_list(),
|
||||
points_normals.n2,
|
||||
x_lengths,
|
||||
y_lengths,
|
||||
)
|
||||
|
||||
def test_chamfer_pointcloud_object_withnormals(self):
|
||||
N = 5
|
||||
P1, P2 = 100, 100
|
||||
@@ -485,6 +571,53 @@ class TestChamfer(TestCaseMixin, unittest.TestCase):
|
||||
loss, loss_norm, pred_loss_mean, pred_loss_norm_mean, p1, p11, p2, p22
|
||||
)
|
||||
|
||||
def test_single_direction_chamfer_point_reduction_mean(self):
|
||||
"""
|
||||
Compare output of vectorized chamfer loss with naive implementation
|
||||
for point_reduction = "mean" and batch_reduction = None.
|
||||
"""
|
||||
N, max_P1, max_P2 = 7, 10, 18
|
||||
device = get_random_cuda_device()
|
||||
points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device)
|
||||
p1 = points_normals.p1
|
||||
p2 = points_normals.p2
|
||||
p1_normals = points_normals.n1
|
||||
p2_normals = points_normals.n2
|
||||
weights = points_normals.weights
|
||||
p11 = p1.detach().clone()
|
||||
p22 = p2.detach().clone()
|
||||
p11.requires_grad = True
|
||||
p22.requires_grad = True
|
||||
P1 = p1.shape[1]
|
||||
|
||||
pred_loss, pred_loss_norm = TestChamfer.chamfer_distance_naive(
|
||||
p1, p2, x_normals=p1_normals, y_normals=p2_normals
|
||||
)
|
||||
|
||||
# point_reduction = "mean".
|
||||
loss, loss_norm = chamfer_distance(
|
||||
p11,
|
||||
p22,
|
||||
x_normals=p1_normals,
|
||||
y_normals=p2_normals,
|
||||
weights=weights,
|
||||
batch_reduction=None,
|
||||
point_reduction="mean",
|
||||
single_directional=True,
|
||||
)
|
||||
pred_loss_mean = pred_loss[0].sum(1) / P1
|
||||
pred_loss_mean *= weights
|
||||
self.assertClose(loss, pred_loss_mean)
|
||||
|
||||
pred_loss_norm_mean = pred_loss_norm[0].sum(1) / P1
|
||||
pred_loss_norm_mean *= weights
|
||||
self.assertClose(loss_norm, pred_loss_norm_mean)
|
||||
|
||||
# Check gradients
|
||||
self._check_gradients(
|
||||
loss, loss_norm, pred_loss_mean, pred_loss_norm_mean, p1, p11, p2, p22
|
||||
)
|
||||
|
||||
def test_chamfer_point_reduction_sum(self):
|
||||
"""
|
||||
Compare output of vectorized chamfer loss with naive implementation
|
||||
@@ -529,6 +662,51 @@ class TestChamfer(TestCaseMixin, unittest.TestCase):
|
||||
loss, loss_norm, pred_loss_sum, pred_loss_norm_sum, p1, p11, p2, p22
|
||||
)
|
||||
|
||||
def test_single_directional_chamfer_point_reduction_sum(self):
|
||||
"""
|
||||
Compare output of vectorized single directional chamfer loss with naive implementation
|
||||
for point_reduction = "sum" and batch_reduction = None.
|
||||
"""
|
||||
N, P1, P2 = 7, 10, 18
|
||||
device = get_random_cuda_device()
|
||||
points_normals = TestChamfer.init_pointclouds(N, P1, P2, device)
|
||||
p1 = points_normals.p1
|
||||
p2 = points_normals.p2
|
||||
p1_normals = points_normals.n1
|
||||
p2_normals = points_normals.n2
|
||||
weights = points_normals.weights
|
||||
p11 = p1.detach().clone()
|
||||
p22 = p2.detach().clone()
|
||||
p11.requires_grad = True
|
||||
p22.requires_grad = True
|
||||
|
||||
pred_loss, pred_loss_norm = TestChamfer.chamfer_distance_naive(
|
||||
p1, p2, x_normals=p1_normals, y_normals=p2_normals
|
||||
)
|
||||
|
||||
loss, loss_norm = chamfer_distance(
|
||||
p11,
|
||||
p22,
|
||||
x_normals=p1_normals,
|
||||
y_normals=p2_normals,
|
||||
weights=weights,
|
||||
batch_reduction=None,
|
||||
point_reduction="sum",
|
||||
single_directional=True,
|
||||
)
|
||||
pred_loss_sum = pred_loss[0].sum(1)
|
||||
pred_loss_sum *= weights
|
||||
self.assertClose(loss, pred_loss_sum)
|
||||
|
||||
pred_loss_norm_sum = pred_loss_norm[0].sum(1)
|
||||
pred_loss_norm_sum *= weights
|
||||
self.assertClose(loss_norm, pred_loss_norm_sum)
|
||||
|
||||
# Check gradients
|
||||
self._check_gradients(
|
||||
loss, loss_norm, pred_loss_sum, pred_loss_norm_sum, p1, p11, p2, p22
|
||||
)
|
||||
|
||||
def _check_gradients(
|
||||
self,
|
||||
loss,
|
||||
|
||||
Reference in New Issue
Block a user