mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-12-20 22:30:35 +08:00
use assertClose
Summary: use assertClose in some tests, which enforces shape equality. Fixes some small problems, including graph_conv on an empty graph. Reviewed By: nikhilaravi Differential Revision: D20556912 fbshipit-source-id: 60a61eafe3c03ce0f6c9c1a842685708fb10ac5b
This commit is contained in:
committed by
Facebook GitHub Bot
parent
744ef0c2c8
commit
595aca27ea
@@ -6,10 +6,11 @@ import torch
|
||||
from pytorch3d.loss import mesh_edge_loss
|
||||
from pytorch3d.structures import Meshes
|
||||
|
||||
from common_testing import TestCaseMixin
|
||||
from test_sample_points_from_meshes import TestSamplePoints
|
||||
|
||||
|
||||
class TestMeshEdgeLoss(unittest.TestCase):
|
||||
class TestMeshEdgeLoss(TestCaseMixin, unittest.TestCase):
|
||||
def test_empty_meshes(self):
|
||||
device = torch.device("cuda:0")
|
||||
target_length = 0
|
||||
@@ -26,10 +27,8 @@ class TestMeshEdgeLoss(unittest.TestCase):
|
||||
mesh = Meshes(verts=verts_list, faces=faces_list)
|
||||
loss = mesh_edge_loss(mesh, target_length=target_length)
|
||||
|
||||
self.assertTrue(
|
||||
torch.allclose(
|
||||
loss, torch.tensor([0.0], dtype=torch.float32, device=device)
|
||||
)
|
||||
self.assertClose(
|
||||
loss, torch.tensor([0.0], dtype=torch.float32, device=device)
|
||||
)
|
||||
self.assertTrue(loss.requires_grad)
|
||||
|
||||
@@ -94,7 +93,7 @@ class TestMeshEdgeLoss(unittest.TestCase):
|
||||
loss = mesh_edge_loss(meshes, target_length=target_length)
|
||||
|
||||
predloss = TestMeshEdgeLoss.mesh_edge_loss_naive(meshes, target_length)
|
||||
self.assertTrue(torch.allclose(loss, predloss))
|
||||
self.assertClose(loss, predloss)
|
||||
|
||||
@staticmethod
|
||||
def mesh_edge_loss(
|
||||
|
||||
Reference in New Issue
Block a user