iopath dependency

Summary: Add ioPath as a dependency of PyTorch3D in preparation for using the new PathManager.

Reviewed By: nikhilaravi

Differential Revision: D25372971

fbshipit-source-id: d8aa661d2de975e747dd494edc42bf843990cf68
This commit is contained in:
Jeremy Reizenstein 2020-12-24 10:14:37 -08:00 committed by Facebook GitHub Bot
parent 0a309ec6c7
commit 513a6476bc
8 changed files with 9 additions and 4 deletions

View File

@ -75,6 +75,7 @@ jobs:
# - run: conda install -c pytorch pytorch torchvision
- run: pip3 install --progress-bar off 'git+https://github.com/facebookresearch/fvcore'
- run: pip3 install --progress-bar off 'git+https://github.com/facebookresearch/iopath'
- run:
name: get cub
command: |

View File

@ -75,6 +75,7 @@ jobs:
# - run: conda install -c pytorch pytorch torchvision
- run: pip3 install --progress-bar off 'git+https://github.com/facebookresearch/fvcore'
- run: pip3 install --progress-bar off 'git+https://github.com/facebookresearch/iopath'
- run:
name: get cub
command: |

View File

@ -13,6 +13,7 @@ The core library is written in PyTorch. Several components have underlying imple
- torchvision that matches the PyTorch installation. You can install them together as explained at pytorch.org to make sure of this.
- gcc & g++ ≥ 4.9
- [fvcore](https://github.com/facebookresearch/fvcore)
- [ioPath](https://github.com/facebookresearch/iopath)
- If CUDA is to be used, use a version which is supported by the corresponding pytorch version and at least version 9.2.
- If CUDA is to be used and you are building from source, the CUB library must be available. We recommend version 1.10.0.
@ -21,7 +22,7 @@ The runtime dependencies can be installed by running:
conda create -n pytorch3d python=3.8
conda activate pytorch3d
conda install -c pytorch pytorch=1.7.0 torchvision cudatoolkit=10.2
conda install -c conda-forge -c fvcore fvcore
conda install -c conda-forge fvcore iopath
```
For the CUB build time dependency, if you are using conda, you can continue with

View File

@ -19,7 +19,7 @@ conda init bash
source ~/.bashrc
conda create -y -n myenv python=3.8 matplotlib ipython ipywidgets nbconvert
conda activate myenv
conda install -y -c conda-forge fvcore
conda install -y -c conda-forge fvcore iopath
conda install -y -c pytorch pytorch=1.6.0 cudatoolkit=10.1 torchvision
conda install -y -c pytorch3d-nightly pytorch3d
pip install plotly scikit-image

View File

@ -6,5 +6,6 @@ sphinx_markdown_tables
mock
numpy
git+git://github.com/facebookresearch/fvcore.git
git+git://github.com/facebookresearch/iopath.git
https://download.pytorch.org/whl/cpu/torchvision-0.8.2%2Bcpu-cp37-cp37m-linux_x86_64.whl
https://download.pytorch.org/whl/cpu/torch-1.7.1%2Bcpu-cp37-cp37m-linux_x86_64.whl

View File

@ -17,4 +17,4 @@ setup_conda_pytorch_constraint
setup_conda_cudatoolkit_constraint
setup_visual_studio_constraint
# shellcheck disable=SC2086
conda build $CONDA_CHANNEL_FLAGS ${TEST_FLAG:-} -c bottler -c defaults -c conda-forge --no-anaconda-upload -c fvcore --python "$PYTHON_VERSION" packaging/pytorch3d
conda build $CONDA_CHANNEL_FLAGS ${TEST_FLAG:-} -c bottler -c defaults -c conda-forge --no-anaconda-upload --python "$PYTHON_VERSION" packaging/pytorch3d

View File

@ -22,6 +22,7 @@ requirements:
- numpy >=1.11
- torchvision >=0.5
- fvcore
- iopath
{{ environ.get('CONDA_PYTORCH_CONSTRAINT') }}
{{ environ.get('CONDA_CUDATOOLKIT_CONSTRAINT') }}

View File

@ -109,7 +109,7 @@ setup(
description="PyTorch3D is FAIR's library of reusable components "
"for deep Learning with 3D data.",
packages=find_packages(exclude=("configs", "tests", "tests.*")),
install_requires=["torchvision>=0.4", "fvcore"],
install_requires=["torchvision>=0.4", "fvcore", "iopath"],
extras_require={
"all": ["matplotlib", "tqdm>4.29.0", "imageio", "ipywidgets"],
"dev": ["flake8", "isort", "black==19.3b0"],