iopath dependency

Summary: Add ioPath as a dependency of PyTorch3D in preparation for using the new PathManager.

Reviewed By: nikhilaravi

Differential Revision: D25372971

fbshipit-source-id: d8aa661d2de975e747dd494edc42bf843990cf68
This commit is contained in:
Jeremy Reizenstein 2020-12-24 10:14:37 -08:00 committed by Facebook GitHub Bot
parent 0a309ec6c7
commit 513a6476bc
8 changed files with 9 additions and 4 deletions

View File

@ -75,6 +75,7 @@ jobs:
# - run: conda install -c pytorch pytorch torchvision # - run: conda install -c pytorch pytorch torchvision
- run: pip3 install --progress-bar off 'git+https://github.com/facebookresearch/fvcore' - run: pip3 install --progress-bar off 'git+https://github.com/facebookresearch/fvcore'
- run: pip3 install --progress-bar off 'git+https://github.com/facebookresearch/iopath'
- run: - run:
name: get cub name: get cub
command: | command: |

View File

@ -75,6 +75,7 @@ jobs:
# - run: conda install -c pytorch pytorch torchvision # - run: conda install -c pytorch pytorch torchvision
- run: pip3 install --progress-bar off 'git+https://github.com/facebookresearch/fvcore' - run: pip3 install --progress-bar off 'git+https://github.com/facebookresearch/fvcore'
- run: pip3 install --progress-bar off 'git+https://github.com/facebookresearch/iopath'
- run: - run:
name: get cub name: get cub
command: | command: |

View File

@ -13,6 +13,7 @@ The core library is written in PyTorch. Several components have underlying imple
- torchvision that matches the PyTorch installation. You can install them together as explained at pytorch.org to make sure of this. - torchvision that matches the PyTorch installation. You can install them together as explained at pytorch.org to make sure of this.
- gcc & g++ ≥ 4.9 - gcc & g++ ≥ 4.9
- [fvcore](https://github.com/facebookresearch/fvcore) - [fvcore](https://github.com/facebookresearch/fvcore)
- [ioPath](https://github.com/facebookresearch/iopath)
- If CUDA is to be used, use a version which is supported by the corresponding pytorch version and at least version 9.2. - If CUDA is to be used, use a version which is supported by the corresponding pytorch version and at least version 9.2.
- If CUDA is to be used and you are building from source, the CUB library must be available. We recommend version 1.10.0. - If CUDA is to be used and you are building from source, the CUB library must be available. We recommend version 1.10.0.
@ -21,7 +22,7 @@ The runtime dependencies can be installed by running:
conda create -n pytorch3d python=3.8 conda create -n pytorch3d python=3.8
conda activate pytorch3d conda activate pytorch3d
conda install -c pytorch pytorch=1.7.0 torchvision cudatoolkit=10.2 conda install -c pytorch pytorch=1.7.0 torchvision cudatoolkit=10.2
conda install -c conda-forge -c fvcore fvcore conda install -c conda-forge fvcore iopath
``` ```
For the CUB build time dependency, if you are using conda, you can continue with For the CUB build time dependency, if you are using conda, you can continue with

View File

@ -19,7 +19,7 @@ conda init bash
source ~/.bashrc source ~/.bashrc
conda create -y -n myenv python=3.8 matplotlib ipython ipywidgets nbconvert conda create -y -n myenv python=3.8 matplotlib ipython ipywidgets nbconvert
conda activate myenv conda activate myenv
conda install -y -c conda-forge fvcore conda install -y -c conda-forge fvcore iopath
conda install -y -c pytorch pytorch=1.6.0 cudatoolkit=10.1 torchvision conda install -y -c pytorch pytorch=1.6.0 cudatoolkit=10.1 torchvision
conda install -y -c pytorch3d-nightly pytorch3d conda install -y -c pytorch3d-nightly pytorch3d
pip install plotly scikit-image pip install plotly scikit-image

View File

@ -6,5 +6,6 @@ sphinx_markdown_tables
mock mock
numpy numpy
git+git://github.com/facebookresearch/fvcore.git git+git://github.com/facebookresearch/fvcore.git
git+git://github.com/facebookresearch/iopath.git
https://download.pytorch.org/whl/cpu/torchvision-0.8.2%2Bcpu-cp37-cp37m-linux_x86_64.whl https://download.pytorch.org/whl/cpu/torchvision-0.8.2%2Bcpu-cp37-cp37m-linux_x86_64.whl
https://download.pytorch.org/whl/cpu/torch-1.7.1%2Bcpu-cp37-cp37m-linux_x86_64.whl https://download.pytorch.org/whl/cpu/torch-1.7.1%2Bcpu-cp37-cp37m-linux_x86_64.whl

View File

@ -17,4 +17,4 @@ setup_conda_pytorch_constraint
setup_conda_cudatoolkit_constraint setup_conda_cudatoolkit_constraint
setup_visual_studio_constraint setup_visual_studio_constraint
# shellcheck disable=SC2086 # shellcheck disable=SC2086
conda build $CONDA_CHANNEL_FLAGS ${TEST_FLAG:-} -c bottler -c defaults -c conda-forge --no-anaconda-upload -c fvcore --python "$PYTHON_VERSION" packaging/pytorch3d conda build $CONDA_CHANNEL_FLAGS ${TEST_FLAG:-} -c bottler -c defaults -c conda-forge --no-anaconda-upload --python "$PYTHON_VERSION" packaging/pytorch3d

View File

@ -22,6 +22,7 @@ requirements:
- numpy >=1.11 - numpy >=1.11
- torchvision >=0.5 - torchvision >=0.5
- fvcore - fvcore
- iopath
{{ environ.get('CONDA_PYTORCH_CONSTRAINT') }} {{ environ.get('CONDA_PYTORCH_CONSTRAINT') }}
{{ environ.get('CONDA_CUDATOOLKIT_CONSTRAINT') }} {{ environ.get('CONDA_CUDATOOLKIT_CONSTRAINT') }}

View File

@ -109,7 +109,7 @@ setup(
description="PyTorch3D is FAIR's library of reusable components " description="PyTorch3D is FAIR's library of reusable components "
"for deep Learning with 3D data.", "for deep Learning with 3D data.",
packages=find_packages(exclude=("configs", "tests", "tests.*")), packages=find_packages(exclude=("configs", "tests", "tests.*")),
install_requires=["torchvision>=0.4", "fvcore"], install_requires=["torchvision>=0.4", "fvcore", "iopath"],
extras_require={ extras_require={
"all": ["matplotlib", "tqdm>4.29.0", "imageio", "ipywidgets"], "all": ["matplotlib", "tqdm>4.29.0", "imageio", "ipywidgets"],
"dev": ["flake8", "isort", "black==19.3b0"], "dev": ["flake8", "isort", "black==19.3b0"],