mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-07-31 10:52:50 +08:00
avoid CPU/GPU sync in sample_farthest_points
Summary: Optimizing sample_farthest_poinst by reducing CPU/GPU sync: 1. replacing iterative randint for starting indexes for 1 function call, if length is constant 2. Avoid sync in fetching maxumum of sample points, if we sample the same amount 3. Initializing 1 tensor for samples and indixes compare https://fburl.com/mlhub/7wk0xi98 Before {F1980383703} after {F1980383707} Histogram match pretty closely {F1980464338} Reviewed By: bottler Differential Revision: D78731869 fbshipit-source-id: 060528ae7a1e0fbbd005d129c151eaf9405841de
This commit is contained in:
parent
e3d3a67a89
commit
5043d15361
@ -107,7 +107,8 @@ at::Tensor FarthestPointSamplingCuda(
|
|||||||
const at::Tensor& points, // (N, P, 3)
|
const at::Tensor& points, // (N, P, 3)
|
||||||
const at::Tensor& lengths, // (N,)
|
const at::Tensor& lengths, // (N,)
|
||||||
const at::Tensor& K, // (N,)
|
const at::Tensor& K, // (N,)
|
||||||
const at::Tensor& start_idxs) {
|
const at::Tensor& start_idxs,
|
||||||
|
const int64_t max_K_known = -1) {
|
||||||
// Check inputs are on the same device
|
// Check inputs are on the same device
|
||||||
at::TensorArg p_t{points, "points", 1}, lengths_t{lengths, "lengths", 2},
|
at::TensorArg p_t{points, "points", 1}, lengths_t{lengths, "lengths", 2},
|
||||||
k_t{K, "K", 3}, start_idxs_t{start_idxs, "start_idxs", 4};
|
k_t{K, "K", 3}, start_idxs_t{start_idxs, "start_idxs", 4};
|
||||||
@ -129,7 +130,12 @@ at::Tensor FarthestPointSamplingCuda(
|
|||||||
|
|
||||||
const int64_t N = points.size(0);
|
const int64_t N = points.size(0);
|
||||||
const int64_t P = points.size(1);
|
const int64_t P = points.size(1);
|
||||||
const int64_t max_K = at::max(K).item<int64_t>();
|
int64_t max_K;
|
||||||
|
if (max_K_known > 0) {
|
||||||
|
max_K = max_K_known;
|
||||||
|
} else {
|
||||||
|
max_K = at::max(K).item<int64_t>();
|
||||||
|
}
|
||||||
|
|
||||||
// Initialize the output tensor with the sampled indices
|
// Initialize the output tensor with the sampled indices
|
||||||
auto idxs = at::full({N, max_K}, -1, lengths.options());
|
auto idxs = at::full({N, max_K}, -1, lengths.options());
|
||||||
|
@ -43,7 +43,8 @@ at::Tensor FarthestPointSamplingCuda(
|
|||||||
const at::Tensor& points,
|
const at::Tensor& points,
|
||||||
const at::Tensor& lengths,
|
const at::Tensor& lengths,
|
||||||
const at::Tensor& K,
|
const at::Tensor& K,
|
||||||
const at::Tensor& start_idxs);
|
const at::Tensor& start_idxs,
|
||||||
|
const int64_t max_K_known = -1);
|
||||||
|
|
||||||
at::Tensor FarthestPointSamplingCpu(
|
at::Tensor FarthestPointSamplingCpu(
|
||||||
const at::Tensor& points,
|
const at::Tensor& points,
|
||||||
@ -56,14 +57,16 @@ at::Tensor FarthestPointSampling(
|
|||||||
const at::Tensor& points,
|
const at::Tensor& points,
|
||||||
const at::Tensor& lengths,
|
const at::Tensor& lengths,
|
||||||
const at::Tensor& K,
|
const at::Tensor& K,
|
||||||
const at::Tensor& start_idxs) {
|
const at::Tensor& start_idxs,
|
||||||
|
const int64_t max_K_known = -1) {
|
||||||
if (points.is_cuda() || lengths.is_cuda() || K.is_cuda()) {
|
if (points.is_cuda() || lengths.is_cuda() || K.is_cuda()) {
|
||||||
#ifdef WITH_CUDA
|
#ifdef WITH_CUDA
|
||||||
CHECK_CUDA(points);
|
CHECK_CUDA(points);
|
||||||
CHECK_CUDA(lengths);
|
CHECK_CUDA(lengths);
|
||||||
CHECK_CUDA(K);
|
CHECK_CUDA(K);
|
||||||
CHECK_CUDA(start_idxs);
|
CHECK_CUDA(start_idxs);
|
||||||
return FarthestPointSamplingCuda(points, lengths, K, start_idxs);
|
return FarthestPointSamplingCuda(
|
||||||
|
points, lengths, K, start_idxs, max_K_known);
|
||||||
#else
|
#else
|
||||||
AT_ERROR("Not compiled with GPU support.");
|
AT_ERROR("Not compiled with GPU support.");
|
||||||
#endif
|
#endif
|
||||||
|
@ -55,6 +55,7 @@ def sample_farthest_points(
|
|||||||
N, P, D = points.shape
|
N, P, D = points.shape
|
||||||
device = points.device
|
device = points.device
|
||||||
|
|
||||||
|
constant_length = lengths is None
|
||||||
# Validate inputs
|
# Validate inputs
|
||||||
if lengths is None:
|
if lengths is None:
|
||||||
lengths = torch.full((N,), P, dtype=torch.int64, device=device)
|
lengths = torch.full((N,), P, dtype=torch.int64, device=device)
|
||||||
@ -65,7 +66,9 @@ def sample_farthest_points(
|
|||||||
raise ValueError("A value in lengths was too large.")
|
raise ValueError("A value in lengths was too large.")
|
||||||
|
|
||||||
# TODO: support providing K as a ratio of the total number of points instead of as an int
|
# TODO: support providing K as a ratio of the total number of points instead of as an int
|
||||||
|
max_K = -1
|
||||||
if isinstance(K, int):
|
if isinstance(K, int):
|
||||||
|
max_K = K
|
||||||
K = torch.full((N,), K, dtype=torch.int64, device=device)
|
K = torch.full((N,), K, dtype=torch.int64, device=device)
|
||||||
elif isinstance(K, list):
|
elif isinstance(K, list):
|
||||||
K = torch.tensor(K, dtype=torch.int64, device=device)
|
K = torch.tensor(K, dtype=torch.int64, device=device)
|
||||||
@ -82,15 +85,17 @@ def sample_farthest_points(
|
|||||||
K = K.to(torch.int64)
|
K = K.to(torch.int64)
|
||||||
|
|
||||||
# Generate the starting indices for sampling
|
# Generate the starting indices for sampling
|
||||||
start_idxs = torch.zeros_like(lengths)
|
|
||||||
if random_start_point:
|
if random_start_point:
|
||||||
for n in range(N):
|
if constant_length:
|
||||||
# pyre-fixme[6]: For 1st param expected `int` but got `Tensor`.
|
start_idxs = torch.randint(high=P, size=(N,), device=device)
|
||||||
start_idxs[n] = torch.randint(high=lengths[n], size=(1,)).item()
|
else:
|
||||||
|
start_idxs = (lengths * torch.rand(lengths.size())).to(torch.int64)
|
||||||
|
else:
|
||||||
|
start_idxs = torch.zeros_like(lengths)
|
||||||
|
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
# pyre-fixme[16]: `pytorch3d_._C` has no attribute `sample_farthest_points`.
|
# pyre-fixme[16]: `pytorch3d_._C` has no attribute `sample_farthest_points`.
|
||||||
idx = _C.sample_farthest_points(points, lengths, K, start_idxs)
|
idx = _C.sample_farthest_points(points, lengths, K, start_idxs, max_K)
|
||||||
sampled_points = masked_gather(points, idx)
|
sampled_points = masked_gather(points, idx)
|
||||||
|
|
||||||
return sampled_points, idx
|
return sampled_points, idx
|
||||||
|
Loading…
x
Reference in New Issue
Block a user