ViewPooler class

Summary: Implements a ViewPooler that groups ViewSampler and FeatureAggregator.

Reviewed By: shapovalov

Differential Revision: D35852367

fbshipit-source-id: c1bcaf5a1f826ff94efce53aa5836121ad9c50ec
This commit is contained in:
David Novotny
2022-05-12 12:50:03 -07:00
committed by Facebook GitHub Bot
parent bef959c755
commit 47d06c8924
26 changed files with 304 additions and 110 deletions

View File

@@ -8,7 +8,6 @@ bg_color:
- 0.0
- 0.0
- 0.0
view_pool: false
num_passes: 1
chunk_size_grid: 4096
render_features_dimensions: 3
@@ -17,7 +16,8 @@ n_train_target_views: 1
sampling_mode_training: mask_sample
sampling_mode_evaluation: full_grid
renderer_class_type: LSTMRenderer
feature_aggregator_class_type: AngleWeightedIdentityFeatureAggregator
image_feature_extractor_enabled: true
view_pooler_enabled: true
implicit_function_class_type: IdrFeatureField
loss_weights:
loss_rgb_mse: 1.0
@@ -91,15 +91,17 @@ image_feature_extractor_args:
add_images: true
global_average_pool: false
feature_rescale: 1.0
view_sampler_args:
masked_sampling: false
sampling_mode: bilinear
feature_aggregator_AngleWeightedIdentityFeatureAggregator_args:
exclude_target_view: true
exclude_target_view_mask_features: true
concatenate_output: true
weight_by_ray_angle_gamma: 1.0
min_ray_angle_weight: 0.1
view_pooler_args:
feature_aggregator_class_type: AngleWeightedIdentityFeatureAggregator
view_sampler_args:
masked_sampling: false
sampling_mode: bilinear
feature_aggregator_AngleWeightedIdentityFeatureAggregator_args:
exclude_target_view: true
exclude_target_view_mask_features: true
concatenate_output: true
weight_by_ray_angle_gamma: 1.0
min_ray_angle_weight: 0.1
implicit_function_IdrFeatureField_args:
feature_vector_size: 3
d_in: 3

View File

@@ -20,9 +20,8 @@ from pytorch3d.implicitron.models.renderer.lstm_renderer import LSTMRenderer
from pytorch3d.implicitron.models.renderer.multipass_ea import (
MultiPassEmissionAbsorptionRenderer,
)
from pytorch3d.implicitron.models.view_pooling.feature_aggregation import (
from pytorch3d.implicitron.models.view_pooler.feature_aggregator import (
AngleWeightedIdentityFeatureAggregator,
AngleWeightedReductionFeatureAggregator,
)
from pytorch3d.implicitron.tools.config import (
get_default_args,
@@ -32,7 +31,10 @@ from pytorch3d.implicitron.tools.config import (
if os.environ.get("FB_TEST", False):
from common_testing import get_tests_dir
from .common_resources import provide_lpips_vgg
else:
from common_resources import provide_lpips_vgg # noqa
from tests.common_testing import get_tests_dir
DATA_DIR = get_tests_dir() / "implicitron/data"
@@ -46,28 +48,33 @@ class TestGenericModel(unittest.TestCase):
self.maxDiff = None
def test_create_gm(self):
provide_lpips_vgg()
args = get_default_args(GenericModel)
gm = GenericModel(**args)
self.assertIsInstance(gm.renderer, MultiPassEmissionAbsorptionRenderer)
self.assertIsInstance(
gm.feature_aggregator, AngleWeightedReductionFeatureAggregator
)
self.assertIsInstance(
gm._implicit_functions[0]._fn, NeuralRadianceFieldImplicitFunction
)
self.assertIsInstance(gm.sequence_autodecoder, Autodecoder)
self.assertFalse(hasattr(gm, "implicit_function"))
self.assertFalse(hasattr(gm, "image_feature_extractor"))
self.assertIsNone(gm.view_pooler)
self.assertIsNone(gm.image_feature_extractor)
def test_create_gm_overrides(self):
def _test_create_gm_overrides(self):
provide_lpips_vgg()
args = get_default_args(GenericModel)
args.feature_aggregator_class_type = "AngleWeightedIdentityFeatureAggregator"
args.view_pooler_enabled = True
args.image_feature_extractor_enabled = True
args.view_pooler_args.feature_aggregator_class_type = (
"AngleWeightedIdentityFeatureAggregator"
)
args.implicit_function_class_type = "IdrFeatureField"
args.renderer_class_type = "LSTMRenderer"
gm = GenericModel(**args)
self.assertIsInstance(gm.renderer, LSTMRenderer)
self.assertIsInstance(
gm.feature_aggregator, AngleWeightedIdentityFeatureAggregator
gm.view_pooler.feature_aggregator,
AngleWeightedIdentityFeatureAggregator,
)
self.assertIsInstance(gm._implicit_functions[0]._fn, IdrFeatureField)
self.assertIsInstance(gm.sequence_autodecoder, Autodecoder)

View File

@@ -56,7 +56,12 @@ class TestGenericModel(unittest.TestCase):
cfg = _load_model_config_from_yaml(str(config_file))
model = GenericModel(**cfg)
model.to(device)
self._one_model_test(model, device, eval_test=True)
self._one_model_test(
model,
device,
eval_test=True,
bw_test=True,
)
def _one_model_test(
self,
@@ -64,6 +69,7 @@ class TestGenericModel(unittest.TestCase):
device,
n_train_cameras: int = 5,
eval_test: bool = True,
bw_test: bool = True,
):
R, T = look_at_view_transform(azim=torch.rand(n_train_cameras) * 360)
@@ -86,8 +92,12 @@ class TestGenericModel(unittest.TestCase):
**random_args,
evaluation_mode=EvaluationMode.TRAINING,
)
self.assertGreater(train_preds["objective"].item(), 0)
train_preds["objective"].backward()
self.assertTrue(
train_preds["objective"].isfinite().item()
) # check finiteness of the objective
if bw_test:
train_preds["objective"].backward()
if eval_test:
model.eval()

View File

@@ -9,7 +9,7 @@ import unittest
import pytorch3d as pt3d
import torch
from pytorch3d.implicitron.models.view_pooling.view_sampling import ViewSampler
from pytorch3d.implicitron.models.view_pooler.view_sampler import ViewSampler
from pytorch3d.implicitron.tools.config import expand_args_fields