mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 11:52:50 +08:00
cameras_from_opencv_projection device #1021
Summary: Fix https://github.com/facebookresearch/pytorch3d/issues/1021 that cameras_from_opencv_projection always creates on CPU. Reviewed By: nikhilaravi Differential Revision: D33508211 fbshipit-source-id: fadebd45cacafd633af6a58094cf6f654529992c
This commit is contained in:
parent
39bb2ce063
commit
45d096e219
@ -55,6 +55,7 @@ def _cameras_from_opencv_projection(
|
|||||||
focal_length=focal_pytorch3d,
|
focal_length=focal_pytorch3d,
|
||||||
principal_point=p0_pytorch3d,
|
principal_point=p0_pytorch3d,
|
||||||
image_size=image_size,
|
image_size=image_size,
|
||||||
|
device=R.device,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@ -68,7 +68,7 @@ class TestCameraConversions(TestCaseMixin, unittest.TestCase):
|
|||||||
return correct projections of random 3D points. The check is done
|
return correct projections of random 3D points. The check is done
|
||||||
against a set of results precomuted using `cv2.projectPoints` function.
|
against a set of results precomuted using `cv2.projectPoints` function.
|
||||||
"""
|
"""
|
||||||
|
device = torch.device("cuda:0")
|
||||||
image_size = [[480, 640]] * 4
|
image_size = [[480, 640]] * 4
|
||||||
R = [
|
R = [
|
||||||
[
|
[
|
||||||
@ -116,17 +116,19 @@ class TestCameraConversions(TestCaseMixin, unittest.TestCase):
|
|||||||
]
|
]
|
||||||
|
|
||||||
principal_point, focal_length, R, tvec, image_size = [
|
principal_point, focal_length, R, tvec, image_size = [
|
||||||
torch.FloatTensor(x)
|
torch.tensor(x, device=device)
|
||||||
for x in (principal_point, focal_length, R, tvec, image_size)
|
for x in (principal_point, focal_length, R, tvec, image_size)
|
||||||
]
|
]
|
||||||
camera_matrix = eyes(dim=3, N=4)
|
camera_matrix = eyes(dim=3, N=4, device=device)
|
||||||
camera_matrix[:, 0, 0], camera_matrix[:, 1, 1] = (
|
camera_matrix[:, 0, 0], camera_matrix[:, 1, 1] = (
|
||||||
focal_length[:, 0],
|
focal_length[:, 0],
|
||||||
focal_length[:, 1],
|
focal_length[:, 1],
|
||||||
)
|
)
|
||||||
camera_matrix[:, :2, 2] = principal_point
|
camera_matrix[:, :2, 2] = principal_point
|
||||||
|
|
||||||
pts = torch.nn.functional.normalize(torch.randn(4, 1000, 3), dim=-1)
|
pts = torch.nn.functional.normalize(
|
||||||
|
torch.randn(4, 1000, 3, device=device), dim=-1
|
||||||
|
)
|
||||||
|
|
||||||
# project the 3D points with the opencv projection function
|
# project the 3D points with the opencv projection function
|
||||||
rvec = so3_log_map(R)
|
rvec = so3_log_map(R)
|
||||||
@ -136,6 +138,7 @@ class TestCameraConversions(TestCaseMixin, unittest.TestCase):
|
|||||||
cameras_opencv_to_pytorch3d = cameras_from_opencv_projection(
|
cameras_opencv_to_pytorch3d = cameras_from_opencv_projection(
|
||||||
R, tvec, camera_matrix, image_size
|
R, tvec, camera_matrix, image_size
|
||||||
)
|
)
|
||||||
|
self.assertEqual(cameras_opencv_to_pytorch3d.device, device)
|
||||||
|
|
||||||
# project the 3D points with converted cameras to screen space.
|
# project the 3D points with converted cameras to screen space.
|
||||||
pts_proj_pytorch3d_screen = cameras_opencv_to_pytorch3d.transform_points_screen(
|
pts_proj_pytorch3d_screen = cameras_opencv_to_pytorch3d.transform_points_screen(
|
||||||
|
Loading…
x
Reference in New Issue
Block a user