mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 20:02:49 +08:00
suppress errors in vision/fair/pytorch3d
Differential Revision: D29573014 fbshipit-source-id: 87083e30d757fcceb4e380edc9973e07e6da6c76
This commit is contained in:
parent
10eb3892da
commit
44d2a9b623
@ -385,7 +385,6 @@ def splat_points_to_volumes(
|
|||||||
volume_features.scatter_add_(2, idx_valid, w_valid * points_features)
|
volume_features.scatter_add_(2, idx_valid, w_valid * points_features)
|
||||||
|
|
||||||
# divide each feature by the total weight of the votes
|
# divide each feature by the total weight of the votes
|
||||||
# pyre-fixme[20]: Argument `max` expected.
|
|
||||||
volume_features = volume_features / volume_densities.view(ba, 1, n_voxels).clamp(
|
volume_features = volume_features / volume_densities.view(ba, 1, n_voxels).clamp(
|
||||||
min_weight
|
min_weight
|
||||||
)
|
)
|
||||||
@ -495,7 +494,6 @@ def round_points_to_volumes(
|
|||||||
volume_features.scatter_add_(2, idx_valid, w_valid * points_features)
|
volume_features.scatter_add_(2, idx_valid, w_valid * points_features)
|
||||||
|
|
||||||
# divide each feature by the total weight of the votes
|
# divide each feature by the total weight of the votes
|
||||||
# pyre-fixme[20]: Argument `max` expected.
|
|
||||||
volume_features = volume_features / volume_densities.view(ba, 1, n_voxels).clamp(
|
volume_features = volume_features / volume_densities.view(ba, 1, n_voxels).clamp(
|
||||||
1.0
|
1.0
|
||||||
)
|
)
|
||||||
|
@ -209,7 +209,6 @@ def softmax_rgb_blend(
|
|||||||
|
|
||||||
# Also apply exp normalize trick for the background color weight.
|
# Also apply exp normalize trick for the background color weight.
|
||||||
# Clamp to ensure delta is never 0.
|
# Clamp to ensure delta is never 0.
|
||||||
# pyre-fixme[20]: Argument `max` expected.
|
|
||||||
# pyre-fixme[6]: Expected `Tensor` for 1st param but got `float`.
|
# pyre-fixme[6]: Expected `Tensor` for 1st param but got `float`.
|
||||||
delta = torch.exp((eps - z_inv_max) / blend_params.gamma).clamp(min=eps)
|
delta = torch.exp((eps - z_inv_max) / blend_params.gamma).clamp(min=eps)
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user