remove nearest_neighbors

Summary: knn is more general and faster than the nearest_neighbor code, so remove the latter.

Reviewed By: gkioxari

Differential Revision: D20816424

fbshipit-source-id: 75d6c44d17180752d0c9859814bbdf7892558158
This commit is contained in:
Nikhila Ravi
2020-04-15 20:49:16 -07:00
committed by Facebook GitHub Bot
parent 790eb8c402
commit 3794f6753f
6 changed files with 0 additions and 217 deletions

View File

@@ -1,42 +0,0 @@
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
from itertools import product
import torch
from fvcore.common.benchmark import benchmark
from test_nearest_neighbor_points import TestNearestNeighborPoints
def bm_nn_points() -> None:
kwargs_list = []
N = [1, 4, 32]
D = [3, 4]
P1 = [1, 128]
P2 = [32, 128]
test_cases = product(N, D, P1, P2)
for case in test_cases:
n, d, p1, p2 = case
kwargs_list.append({"N": n, "D": d, "P1": p1, "P2": p2})
benchmark(
TestNearestNeighborPoints.bm_nn_points_python_with_init,
"NN_PYTHON",
kwargs_list,
warmup_iters=1,
)
benchmark(
TestNearestNeighborPoints.bm_nn_points_cpu_with_init,
"NN_CPU",
kwargs_list,
warmup_iters=1,
)
if torch.cuda.is_available():
benchmark(
TestNearestNeighborPoints.bm_nn_points_cuda_with_init,
"NN_CUDA",
kwargs_list,
warmup_iters=1,
)

View File

@@ -1,91 +0,0 @@
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
import unittest
import torch
from pytorch3d import _C
class TestNearestNeighborPoints(unittest.TestCase):
@staticmethod
def nn_points_idx_naive(x, y):
"""
PyTorch implementation of nn_points_idx function.
"""
N, P1, D = x.shape
_N, P2, _D = y.shape
assert N == _N and D == _D
diffs = x.view(N, P1, 1, D) - y.view(N, 1, P2, D)
dists2 = (diffs * diffs).sum(3)
idx = dists2.argmin(2)
return idx
def _test_nn_helper(self, device):
for D in [3, 4]:
for N in [1, 4]:
for P1 in [1, 8, 64, 128]:
for P2 in [32, 128]:
x = torch.randn(N, P1, D, device=device)
y = torch.randn(N, P2, D, device=device)
# _C.nn_points_idx should dispatch
# to the cpp or cuda versions of the function
# depending on the input type.
idx1 = _C.nn_points_idx(x, y)
idx2 = TestNearestNeighborPoints.nn_points_idx_naive(x, y)
self.assertTrue(idx1.size(1) == P1)
self.assertTrue(torch.all(idx1 == idx2))
def test_nn_cuda(self):
"""
Test cuda output vs naive python implementation.
"""
device = torch.device("cuda:0")
self._test_nn_helper(device)
def test_nn_cpu(self):
"""
Test cpu output vs naive python implementation
"""
device = torch.device("cpu")
self._test_nn_helper(device)
@staticmethod
def bm_nn_points_cpu_with_init(
N: int = 4, D: int = 4, P1: int = 128, P2: int = 128
):
device = torch.device("cpu")
x = torch.randn(N, P1, D, device=device)
y = torch.randn(N, P2, D, device=device)
def nn_cpu():
_C.nn_points_idx(x.contiguous(), y.contiguous())
return nn_cpu
@staticmethod
def bm_nn_points_cuda_with_init(
N: int = 4, D: int = 4, P1: int = 128, P2: int = 128
):
device = torch.device("cuda:0")
x = torch.randn(N, P1, D, device=device)
y = torch.randn(N, P2, D, device=device)
torch.cuda.synchronize()
def nn_cpp():
_C.nn_points_idx(x.contiguous(), y.contiguous())
torch.cuda.synchronize()
return nn_cpp
@staticmethod
def bm_nn_points_python_with_init(
N: int = 4, D: int = 4, P1: int = 128, P2: int = 128
):
x = torch.randn(N, P1, D)
y = torch.randn(N, P2, D)
def nn_python():
TestNearestNeighborPoints.nn_points_idx_naive(x, y)
return nn_python