mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-12-20 22:30:35 +08:00
extend sample_points_from_meshes with texture
Summary: Enhanced `sample_points_from_meshes` with texture sampling * This new feature is used to return textures corresponding to the sampled points in `sample_points_from_meshes` Reviewed By: nikhilaravi Differential Revision: D24031525 fbshipit-source-id: 8e5d8f784cc38aa391aa8e84e54423bd9fad7ad1
This commit is contained in:
committed by
Facebook GitHub Bot
parent
5c9485c7be
commit
327bd2b976
@@ -4,13 +4,31 @@
|
||||
import unittest
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from common_testing import TestCaseMixin, get_random_cuda_device
|
||||
from PIL import Image
|
||||
from pytorch3d.io import load_objs_as_meshes
|
||||
from pytorch3d.ops import sample_points_from_meshes
|
||||
from pytorch3d.structures.meshes import Meshes
|
||||
from pytorch3d.renderer import TexturesVertex
|
||||
from pytorch3d.renderer.cameras import FoVPerspectiveCameras, look_at_view_transform
|
||||
from pytorch3d.renderer.mesh.rasterize_meshes import barycentric_coordinates
|
||||
from pytorch3d.renderer.points import (
|
||||
NormWeightedCompositor,
|
||||
PointsRasterizationSettings,
|
||||
PointsRasterizer,
|
||||
PointsRenderer,
|
||||
)
|
||||
from pytorch3d.structures import Meshes, Pointclouds
|
||||
from pytorch3d.utils.ico_sphere import ico_sphere
|
||||
|
||||
|
||||
# If DEBUG=True, save out images generated in the tests for debugging.
|
||||
# All saved images have prefix DEBUG_
|
||||
DEBUG = False
|
||||
DATA_DIR = Path(__file__).resolve().parent / "data"
|
||||
|
||||
|
||||
class TestSamplePoints(TestCaseMixin, unittest.TestCase):
|
||||
def setUp(self) -> None:
|
||||
super().setUp()
|
||||
@@ -22,18 +40,27 @@ class TestSamplePoints(TestCaseMixin, unittest.TestCase):
|
||||
num_verts: int = 1000,
|
||||
num_faces: int = 3000,
|
||||
device: str = "cpu",
|
||||
add_texture: bool = False,
|
||||
):
|
||||
device = torch.device(device)
|
||||
verts_list = []
|
||||
faces_list = []
|
||||
texts_list = []
|
||||
for _ in range(num_meshes):
|
||||
verts = torch.rand((num_verts, 3), dtype=torch.float32, device=device)
|
||||
faces = torch.randint(
|
||||
num_verts, size=(num_faces, 3), dtype=torch.int64, device=device
|
||||
)
|
||||
texts = torch.rand((num_verts, 3), dtype=torch.float32, device=device)
|
||||
verts_list.append(verts)
|
||||
faces_list.append(faces)
|
||||
meshes = Meshes(verts_list, faces_list)
|
||||
texts_list.append(texts)
|
||||
|
||||
# create textures
|
||||
textures = None
|
||||
if add_texture:
|
||||
textures = TexturesVertex(texts_list)
|
||||
meshes = Meshes(verts=verts_list, faces=faces_list, textures=textures)
|
||||
|
||||
return meshes
|
||||
|
||||
@@ -264,6 +291,147 @@ class TestSamplePoints(TestCaseMixin, unittest.TestCase):
|
||||
meshes, num_samples=100, return_normals=True
|
||||
)
|
||||
|
||||
def test_outputs(self):
|
||||
|
||||
for add_texture in (True, False):
|
||||
meshes = TestSamplePoints.init_meshes(
|
||||
device=torch.device("cuda:0"), add_texture=add_texture
|
||||
)
|
||||
out1 = sample_points_from_meshes(meshes, num_samples=100)
|
||||
self.assertTrue(torch.is_tensor(out1))
|
||||
|
||||
out2 = sample_points_from_meshes(
|
||||
meshes, num_samples=100, return_normals=True
|
||||
)
|
||||
self.assertTrue(isinstance(out2, tuple) and len(out2) == 2)
|
||||
|
||||
if add_texture:
|
||||
out3 = sample_points_from_meshes(
|
||||
meshes, num_samples=100, return_textures=True
|
||||
)
|
||||
self.assertTrue(isinstance(out3, tuple) and len(out3) == 2)
|
||||
|
||||
out4 = sample_points_from_meshes(
|
||||
meshes, num_samples=100, return_normals=True, return_textures=True
|
||||
)
|
||||
self.assertTrue(isinstance(out4, tuple) and len(out4) == 3)
|
||||
else:
|
||||
with self.assertRaisesRegex(
|
||||
ValueError, "Meshes do not contain textures."
|
||||
):
|
||||
sample_points_from_meshes(
|
||||
meshes, num_samples=100, return_textures=True
|
||||
)
|
||||
|
||||
with self.assertRaisesRegex(
|
||||
ValueError, "Meshes do not contain textures."
|
||||
):
|
||||
sample_points_from_meshes(
|
||||
meshes,
|
||||
num_samples=100,
|
||||
return_normals=True,
|
||||
return_textures=True,
|
||||
)
|
||||
|
||||
def test_texture_sampling(self):
|
||||
device = torch.device("cuda:0")
|
||||
batch_size = 6
|
||||
# verts
|
||||
verts = torch.rand((batch_size, 6, 3), device=device, dtype=torch.float32)
|
||||
verts[:, :3, 2] = 1.0
|
||||
verts[:, 3:, 2] = -1.0
|
||||
# textures
|
||||
texts = torch.rand((batch_size, 6, 3), device=device, dtype=torch.float32)
|
||||
# faces
|
||||
faces = torch.tensor([[0, 1, 2], [3, 4, 5]], device=device, dtype=torch.int64)
|
||||
faces = faces.view(1, 2, 3).expand(batch_size, -1, -1)
|
||||
|
||||
meshes = Meshes(verts=verts, faces=faces, textures=TexturesVertex(texts))
|
||||
|
||||
num_samples = 24
|
||||
samples, normals, textures = sample_points_from_meshes(
|
||||
meshes, num_samples=num_samples, return_normals=True, return_textures=True
|
||||
)
|
||||
|
||||
textures_naive = torch.zeros(
|
||||
(batch_size, num_samples, 3), dtype=torch.float32, device=device
|
||||
)
|
||||
for n in range(batch_size):
|
||||
for i in range(num_samples):
|
||||
p = samples[n, i]
|
||||
if p[2] > 0.0: # sampled from 1st face
|
||||
v0, v1, v2 = verts[n, 0, :2], verts[n, 1, :2], verts[n, 2, :2]
|
||||
w0, w1, w2 = barycentric_coordinates(p[:2], v0, v1, v2)
|
||||
t0, t1, t2 = texts[n, 0], texts[n, 1], texts[n, 2]
|
||||
else: # sampled from 2nd face
|
||||
v0, v1, v2 = verts[n, 3, :2], verts[n, 4, :2], verts[n, 5, :2]
|
||||
w0, w1, w2 = barycentric_coordinates(p[:2], v0, v1, v2)
|
||||
t0, t1, t2 = texts[n, 3], texts[n, 4], texts[n, 5]
|
||||
|
||||
tt = w0 * t0 + w1 * t1 + w2 * t2
|
||||
textures_naive[n, i] = tt
|
||||
|
||||
self.assertClose(textures, textures_naive)
|
||||
|
||||
def test_texture_sampling_cow(self):
|
||||
# test texture sampling for the cow example by converting
|
||||
# the cow mesh and its texture uv to a pointcloud with texture
|
||||
|
||||
device = torch.device("cuda:0")
|
||||
obj_dir = Path(__file__).resolve().parent.parent / "docs/tutorials/data"
|
||||
obj_filename = obj_dir / "cow_mesh/cow.obj"
|
||||
|
||||
for text_type in ("uv", "atlas"):
|
||||
# Load mesh + texture
|
||||
if text_type == "uv":
|
||||
mesh = load_objs_as_meshes(
|
||||
[obj_filename], device=device, load_textures=True, texture_wrap=None
|
||||
)
|
||||
elif text_type == "atlas":
|
||||
mesh = load_objs_as_meshes(
|
||||
[obj_filename],
|
||||
device=device,
|
||||
load_textures=True,
|
||||
create_texture_atlas=True,
|
||||
texture_atlas_size=8,
|
||||
texture_wrap=None,
|
||||
)
|
||||
|
||||
points, normals, textures = sample_points_from_meshes(
|
||||
mesh, num_samples=50000, return_normals=True, return_textures=True
|
||||
)
|
||||
pointclouds = Pointclouds(points, normals=normals, features=textures)
|
||||
|
||||
for pos in ("front", "back"):
|
||||
# Init rasterizer settings
|
||||
if pos == "back":
|
||||
azim = 0.0
|
||||
elif pos == "front":
|
||||
azim = 180
|
||||
R, T = look_at_view_transform(2.7, 0, azim)
|
||||
cameras = FoVPerspectiveCameras(device=device, R=R, T=T)
|
||||
|
||||
raster_settings = PointsRasterizationSettings(
|
||||
image_size=512, radius=1e-2, points_per_pixel=1
|
||||
)
|
||||
|
||||
rasterizer = PointsRasterizer(
|
||||
cameras=cameras, raster_settings=raster_settings
|
||||
)
|
||||
compositor = NormWeightedCompositor()
|
||||
renderer = PointsRenderer(rasterizer=rasterizer, compositor=compositor)
|
||||
images = renderer(pointclouds)
|
||||
|
||||
rgb = images[0, ..., :3].squeeze().cpu()
|
||||
if DEBUG:
|
||||
filename = "DEBUG_cow_mesh_to_pointcloud_%s_%s.png" % (
|
||||
text_type,
|
||||
pos,
|
||||
)
|
||||
Image.fromarray((rgb.numpy() * 255).astype(np.uint8)).save(
|
||||
DATA_DIR / filename
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def sample_points_with_init(
|
||||
num_meshes: int,
|
||||
|
||||
Reference in New Issue
Block a user