linter comment strictnesss

Summary: The linter has become stricter about the indenting of comments and docstrings. This was accompanied by a codemod. In a few places we can fix the problem nicer than the codemod has.

Reviewed By: gkioxari

Differential Revision: D24363880

fbshipit-source-id: 4cff3bbe3d2a834bc92a490469a2b24fa376e6ab
This commit is contained in:
Jeremy Reizenstein
2020-10-18 02:37:41 -07:00
committed by Facebook GitHub Bot
parent 563d441b00
commit 30e4e891db
4 changed files with 283 additions and 283 deletions

View File

@@ -9,177 +9,177 @@ from . import utils as struct_utils
class Meshes(object):
"""
This class provides functions for working with batches of triangulated
meshes with varying numbers of faces and vertices, and converting between
representations.
This class provides functions for working with batches of triangulated
meshes with varying numbers of faces and vertices, and converting between
representations.
Within Meshes, there are three different representations of the faces and
verts data:
Within Meshes, there are three different representations of the faces and
verts data:
List
- only used for input as a starting point to convert to other representations.
Padded
- has specific batch dimension.
Packed
- no batch dimension.
- has auxillary variables used to index into the padded representation.
List
- only used for input as a starting point to convert to other representations.
Padded
- has specific batch dimension.
Packed
- no batch dimension.
- has auxillary variables used to index into the padded representation.
Example:
Example:
Input list of verts V_n = [[V_1], [V_2], ... , [V_N]]
where V_1, ... , V_N are the number of verts in each mesh and N is the
numer of meshes.
Input list of verts V_n = [[V_1], [V_2], ... , [V_N]]
where V_1, ... , V_N are the number of verts in each mesh and N is the
numer of meshes.
Input list of faces F_n = [[F_1], [F_2], ... , [F_N]]
where F_1, ... , F_N are the number of faces in each mesh.
Input list of faces F_n = [[F_1], [F_2], ... , [F_N]]
where F_1, ... , F_N are the number of faces in each mesh.
# SPHINX IGNORE
List | Padded | Packed
---------------------------|-------------------------|------------------------
[[V_1], ... , [V_N]] | size = (N, max(V_n), 3) | size = (sum(V_n), 3)
| |
Example for verts: | |
| |
V_1 = 3, V_2 = 4, V_3 = 5 | size = (3, 5, 3) | size = (12, 3)
| |
List([ | tensor([ | tensor([
[ | [ | [0.1, 0.3, 0.5],
[0.1, 0.3, 0.5], | [0.1, 0.3, 0.5], | [0.5, 0.2, 0.1],
[0.5, 0.2, 0.1], | [0.5, 0.2, 0.1], | [0.6, 0.8, 0.7],
[0.6, 0.8, 0.7], | [0.6, 0.8, 0.7], | [0.1, 0.3, 0.3],
], | [0, 0, 0], | [0.6, 0.7, 0.8],
[ | [0, 0, 0], | [0.2, 0.3, 0.4],
[0.1, 0.3, 0.3], | ], | [0.1, 0.5, 0.3],
[0.6, 0.7, 0.8], | [ | [0.7, 0.3, 0.6],
[0.2, 0.3, 0.4], | [0.1, 0.3, 0.3], | [0.2, 0.4, 0.8],
[0.1, 0.5, 0.3], | [0.6, 0.7, 0.8], | [0.9, 0.5, 0.2],
], | [0.2, 0.3, 0.4], | [0.2, 0.3, 0.4],
[ | [0.1, 0.5, 0.3], | [0.9, 0.3, 0.8],
[0.7, 0.3, 0.6], | [0, 0, 0], | ])
[0.2, 0.4, 0.8], | ], |
[0.9, 0.5, 0.2], | [ |
[0.2, 0.3, 0.4], | [0.7, 0.3, 0.6], |
[0.9, 0.3, 0.8], | [0.2, 0.4, 0.8], |
] | [0.9, 0.5, 0.2], |
]) | [0.2, 0.3, 0.4], |
| [0.9, 0.3, 0.8], |
| ] |
| ]) |
Example for faces: | |
| |
F_1 = 1, F_2 = 2, F_3 = 7 | size = (3, 7, 3) | size = (10, 3)
| |
List([ | tensor([ | tensor([
[ | [ | [ 0, 1, 2],
[0, 1, 2], | [0, 1, 2], | [ 3, 4, 5],
], | [-1, -1, -1], | [ 4, 5, 6],
[ | [-1, -1, -1] | [ 8, 9, 7],
[0, 1, 2], | [-1, -1, -1] | [ 7, 8, 10],
[1, 2, 3], | [-1, -1, -1] | [ 9, 10, 8],
], | [-1, -1, -1], | [11, 10, 9],
[ | [-1, -1, -1], | [11, 7, 8],
[1, 2, 0], | ], | [11, 10, 8],
[0, 1, 3], | [ | [11, 9, 8],
[2, 3, 1], | [0, 1, 2], | ])
[4, 3, 2], | [1, 2, 3], |
[4, 0, 1], | [-1, -1, -1], |
[4, 3, 1], | [-1, -1, -1], |
[4, 2, 1], | [-1, -1, -1], |
], | [-1, -1, -1], |
]) | [-1, -1, -1], |
| ], |
| [ |
| [1, 2, 0], |
| [0, 1, 3], |
| [2, 3, 1], |
| [4, 3, 2], |
| [4, 0, 1], |
| [4, 3, 1], |
| [4, 2, 1], |
| ] |
| ]) |
-----------------------------------------------------------------------------
# SPHINX IGNORE
List | Padded | Packed
---------------------------|-------------------------|------------------------
[[V_1], ... , [V_N]] | size = (N, max(V_n), 3) | size = (sum(V_n), 3)
| |
Example for verts: | |
| |
V_1 = 3, V_2 = 4, V_3 = 5 | size = (3, 5, 3) | size = (12, 3)
| |
List([ | tensor([ | tensor([
[ | [ | [0.1, 0.3, 0.5],
[0.1, 0.3, 0.5], | [0.1, 0.3, 0.5], | [0.5, 0.2, 0.1],
[0.5, 0.2, 0.1], | [0.5, 0.2, 0.1], | [0.6, 0.8, 0.7],
[0.6, 0.8, 0.7], | [0.6, 0.8, 0.7], | [0.1, 0.3, 0.3],
], | [0, 0, 0], | [0.6, 0.7, 0.8],
[ | [0, 0, 0], | [0.2, 0.3, 0.4],
[0.1, 0.3, 0.3], | ], | [0.1, 0.5, 0.3],
[0.6, 0.7, 0.8], | [ | [0.7, 0.3, 0.6],
[0.2, 0.3, 0.4], | [0.1, 0.3, 0.3], | [0.2, 0.4, 0.8],
[0.1, 0.5, 0.3], | [0.6, 0.7, 0.8], | [0.9, 0.5, 0.2],
], | [0.2, 0.3, 0.4], | [0.2, 0.3, 0.4],
[ | [0.1, 0.5, 0.3], | [0.9, 0.3, 0.8],
[0.7, 0.3, 0.6], | [0, 0, 0], | ])
[0.2, 0.4, 0.8], | ], |
[0.9, 0.5, 0.2], | [ |
[0.2, 0.3, 0.4], | [0.7, 0.3, 0.6], |
[0.9, 0.3, 0.8], | [0.2, 0.4, 0.8], |
] | [0.9, 0.5, 0.2], |
]) | [0.2, 0.3, 0.4], |
| [0.9, 0.3, 0.8], |
| ] |
| ]) |
Example for faces: | |
| |
F_1 = 1, F_2 = 2, F_3 = 7 | size = (3, 7, 3) | size = (10, 3)
| |
List([ | tensor([ | tensor([
[ | [ | [ 0, 1, 2],
[0, 1, 2], | [0, 1, 2], | [ 3, 4, 5],
], | [-1, -1, -1], | [ 4, 5, 6],
[ | [-1, -1, -1] | [ 8, 9, 7],
[0, 1, 2], | [-1, -1, -1] | [ 7, 8, 10],
[1, 2, 3], | [-1, -1, -1] | [ 9, 10, 8],
], | [-1, -1, -1], | [11, 10, 9],
[ | [-1, -1, -1], | [11, 7, 8],
[1, 2, 0], | ], | [11, 10, 8],
[0, 1, 3], | [ | [11, 9, 8],
[2, 3, 1], | [0, 1, 2], | ])
[4, 3, 2], | [1, 2, 3], |
[4, 0, 1], | [-1, -1, -1], |
[4, 3, 1], | [-1, -1, -1], |
[4, 2, 1], | [-1, -1, -1], |
], | [-1, -1, -1], |
]) | [-1, -1, -1], |
| ], |
| [ |
| [1, 2, 0], |
| [0, 1, 3], |
| [2, 3, 1], |
| [4, 3, 2], |
| [4, 0, 1], |
| [4, 3, 1], |
| [4, 2, 1], |
| ] |
| ]) |
-----------------------------------------------------------------------------
Auxillary variables for packed representation
Auxillary variables for packed representation
Name | Size | Example from above
-------------------------------|---------------------|-----------------------
| |
verts_packed_to_mesh_idx | size = (sum(V_n)) | tensor([
| | 0, 0, 0, 1, 1, 1,
| | 1, 2, 2, 2, 2, 2
| | )]
| | size = (12)
| |
mesh_to_verts_packed_first_idx | size = (N) | tensor([0, 3, 7])
| | size = (3)
| |
num_verts_per_mesh | size = (N) | tensor([3, 4, 5])
| | size = (3)
| |
faces_packed_to_mesh_idx | size = (sum(F_n)) | tensor([
| | 0, 1, 1, 2, 2, 2,
| | 2, 2, 2, 2
| | )]
| | size = (10)
| |
mesh_to_faces_packed_first_idx | size = (N) | tensor([0, 1, 3])
| | size = (3)
| |
num_faces_per_mesh | size = (N) | tensor([1, 2, 7])
| | size = (3)
| |
verts_padded_to_packed_idx | size = (sum(V_n)) | tensor([
| | 0, 1, 2, 5, 6, 7,
| | 8, 10, 11, 12, 13,
| | 14
| | )]
| | size = (12)
-----------------------------------------------------------------------------
# SPHINX IGNORE
Name | Size | Example from above
-------------------------------|---------------------|-----------------------
| |
verts_packed_to_mesh_idx | size = (sum(V_n)) | tensor([
| | 0, 0, 0, 1, 1, 1,
| | 1, 2, 2, 2, 2, 2
| | )]
| | size = (12)
| |
mesh_to_verts_packed_first_idx | size = (N) | tensor([0, 3, 7])
| | size = (3)
| |
num_verts_per_mesh | size = (N) | tensor([3, 4, 5])
| | size = (3)
| |
faces_packed_to_mesh_idx | size = (sum(F_n)) | tensor([
| | 0, 1, 1, 2, 2, 2,
| | 2, 2, 2, 2
| | )]
| | size = (10)
| |
mesh_to_faces_packed_first_idx | size = (N) | tensor([0, 1, 3])
| | size = (3)
| |
num_faces_per_mesh | size = (N) | tensor([1, 2, 7])
| | size = (3)
| |
verts_padded_to_packed_idx | size = (sum(V_n)) | tensor([
| | 0, 1, 2, 5, 6, 7,
| | 8, 10, 11, 12, 13,
| | 14
| | )]
| | size = (12)
-----------------------------------------------------------------------------
# SPHINX IGNORE
From the faces, edges are computed and have packed and padded
representations with auxillary variables.
From the faces, edges are computed and have packed and padded
representations with auxillary variables.
E_n = [[E_1], ... , [E_N]]
where E_1, ... , E_N are the number of unique edges in each mesh.
Total number of unique edges = sum(E_n)
E_n = [[E_1], ... , [E_N]]
where E_1, ... , E_N are the number of unique edges in each mesh.
Total number of unique edges = sum(E_n)
# SPHINX IGNORE
Name | Size | Example from above
-------------------------------|-------------------------|----------------------
| |
edges_packed | size = (sum(E_n), 2) | tensor([
| | [0, 1],
| | [0, 2],
| | [1, 2],
| | ...
| | [10, 11],
| | )]
| | size = (18, 2)
| |
num_edges_per_mesh | size = (N) | tensor([3, 5, 10])
| | size = (3)
| |
edges_packed_to_mesh_idx | size = (sum(E_n)) | tensor([
| | 0, 0, 0,
| | . . .
| | 2, 2, 2
| | ])
| | size = (18)
| |
faces_packed_to_edges_packed | size = (sum(F_n), 3) | tensor([
| | [2, 1, 0],
| | [5, 4, 3],
| | . . .
| | [12, 14, 16],
| | ])
| | size = (10, 3)
| |
mesh_to_edges_packed_first_idx | size = (N) | tensor([0, 3, 8])
| | size = (3)
----------------------------------------------------------------------------
# SPHINX IGNORE
# SPHINX IGNORE
Name | Size | Example from above
-------------------------------|-------------------------|----------------------
| |
edges_packed | size = (sum(E_n), 2) | tensor([
| | [0, 1],
| | [0, 2],
| | [1, 2],
| | ...
| | [10, 11],
| | )]
| | size = (18, 2)
| |
num_edges_per_mesh | size = (N) | tensor([3, 5, 10])
| | size = (3)
| |
edges_packed_to_mesh_idx | size = (sum(E_n)) | tensor([
| | 0, 0, 0,
| | . . .
| | 2, 2, 2
| | ])
| | size = (18)
| |
faces_packed_to_edges_packed | size = (sum(F_n), 3) | tensor([
| | [2, 1, 0],
| | [5, 4, 3],
| | . . .
| | [12, 14, 16],
| | ])
| | size = (10, 3)
| |
mesh_to_edges_packed_first_idx | size = (N) | tensor([0, 3, 8])
| | size = (3)
----------------------------------------------------------------------------
# SPHINX IGNORE
"""
_INTERNAL_TENSORS = [

View File

@@ -8,85 +8,85 @@ from . import utils as struct_utils
class Pointclouds(object):
"""
This class provides functions for working with batches of 3d point clouds,
and converting between representations.
This class provides functions for working with batches of 3d point clouds,
and converting between representations.
Within Pointclouds, there are three different representations of the data.
Within Pointclouds, there are three different representations of the data.
List
- only used for input as a starting point to convert to other representations.
Padded
- has specific batch dimension.
Packed
- no batch dimension.
- has auxillary variables used to index into the padded representation.
List
- only used for input as a starting point to convert to other representations.
Padded
- has specific batch dimension.
Packed
- no batch dimension.
- has auxillary variables used to index into the padded representation.
Example
Example
Input list of points = [[P_1], [P_2], ... , [P_N]]
where P_1, ... , P_N are the number of points in each cloud and N is the
number of clouds.
Input list of points = [[P_1], [P_2], ... , [P_N]]
where P_1, ... , P_N are the number of points in each cloud and N is the
number of clouds.
# SPHINX IGNORE
List | Padded | Packed
---------------------------|-------------------------|------------------------
[[P_1], ... , [P_N]] | size = (N, max(P_n), 3) | size = (sum(P_n), 3)
| |
Example for locations | |
or colors: | |
| |
P_1 = 3, P_2 = 4, P_3 = 5 | size = (3, 5, 3) | size = (12, 3)
| |
List([ | tensor([ | tensor([
[ | [ | [0.1, 0.3, 0.5],
[0.1, 0.3, 0.5], | [0.1, 0.3, 0.5], | [0.5, 0.2, 0.1],
[0.5, 0.2, 0.1], | [0.5, 0.2, 0.1], | [0.6, 0.8, 0.7],
[0.6, 0.8, 0.7] | [0.6, 0.8, 0.7], | [0.1, 0.3, 0.3],
], | [0, 0, 0], | [0.6, 0.7, 0.8],
[ | [0, 0, 0] | [0.2, 0.3, 0.4],
[0.1, 0.3, 0.3], | ], | [0.1, 0.5, 0.3],
[0.6, 0.7, 0.8], | [ | [0.7, 0.3, 0.6],
[0.2, 0.3, 0.4], | [0.1, 0.3, 0.3], | [0.2, 0.4, 0.8],
[0.1, 0.5, 0.3] | [0.6, 0.7, 0.8], | [0.9, 0.5, 0.2],
], | [0.2, 0.3, 0.4], | [0.2, 0.3, 0.4],
[ | [0.1, 0.5, 0.3], | [0.9, 0.3, 0.8],
[0.7, 0.3, 0.6], | [0, 0, 0] | ])
[0.2, 0.4, 0.8], | ], |
[0.9, 0.5, 0.2], | [ |
[0.2, 0.3, 0.4], | [0.7, 0.3, 0.6], |
[0.9, 0.3, 0.8], | [0.2, 0.4, 0.8], |
] | [0.9, 0.5, 0.2], |
]) | [0.2, 0.3, 0.4], |
| [0.9, 0.3, 0.8] |
| ] |
| ]) |
-----------------------------------------------------------------------------
# SPHINX IGNORE
List | Padded | Packed
---------------------------|-------------------------|------------------------
[[P_1], ... , [P_N]] | size = (N, max(P_n), 3) | size = (sum(P_n), 3)
| |
Example for locations | |
or colors: | |
| |
P_1 = 3, P_2 = 4, P_3 = 5 | size = (3, 5, 3) | size = (12, 3)
| |
List([ | tensor([ | tensor([
[ | [ | [0.1, 0.3, 0.5],
[0.1, 0.3, 0.5], | [0.1, 0.3, 0.5], | [0.5, 0.2, 0.1],
[0.5, 0.2, 0.1], | [0.5, 0.2, 0.1], | [0.6, 0.8, 0.7],
[0.6, 0.8, 0.7] | [0.6, 0.8, 0.7], | [0.1, 0.3, 0.3],
], | [0, 0, 0], | [0.6, 0.7, 0.8],
[ | [0, 0, 0] | [0.2, 0.3, 0.4],
[0.1, 0.3, 0.3], | ], | [0.1, 0.5, 0.3],
[0.6, 0.7, 0.8], | [ | [0.7, 0.3, 0.6],
[0.2, 0.3, 0.4], | [0.1, 0.3, 0.3], | [0.2, 0.4, 0.8],
[0.1, 0.5, 0.3] | [0.6, 0.7, 0.8], | [0.9, 0.5, 0.2],
], | [0.2, 0.3, 0.4], | [0.2, 0.3, 0.4],
[ | [0.1, 0.5, 0.3], | [0.9, 0.3, 0.8],
[0.7, 0.3, 0.6], | [0, 0, 0] | ])
[0.2, 0.4, 0.8], | ], |
[0.9, 0.5, 0.2], | [ |
[0.2, 0.3, 0.4], | [0.7, 0.3, 0.6], |
[0.9, 0.3, 0.8], | [0.2, 0.4, 0.8], |
] | [0.9, 0.5, 0.2], |
]) | [0.2, 0.3, 0.4], |
| [0.9, 0.3, 0.8] |
| ] |
| ]) |
-----------------------------------------------------------------------------
Auxillary variables for packed representation
Auxillary variables for packed representation
Name | Size | Example from above
-------------------------------|---------------------|-----------------------
| |
packed_to_cloud_idx | size = (sum(P_n)) | tensor([
| | 0, 0, 0, 1, 1, 1,
| | 1, 2, 2, 2, 2, 2
| | )]
| | size = (12)
| |
cloud_to_packed_first_idx | size = (N) | tensor([0, 3, 7])
| | size = (3)
| |
num_points_per_cloud | size = (N) | tensor([3, 4, 5])
| | size = (3)
| |
padded_to_packed_idx | size = (sum(P_n)) | tensor([
| | 0, 1, 2, 5, 6, 7,
| | 8, 10, 11, 12, 13,
| | 14
| | )]
| | size = (12)
-----------------------------------------------------------------------------
# SPHINX IGNORE
Name | Size | Example from above
-------------------------------|---------------------|-----------------------
| |
packed_to_cloud_idx | size = (sum(P_n)) | tensor([
| | 0, 0, 0, 1, 1, 1,
| | 1, 2, 2, 2, 2, 2
| | )]
| | size = (12)
| |
cloud_to_packed_first_idx | size = (N) | tensor([0, 3, 7])
| | size = (3)
| |
num_points_per_cloud | size = (N) | tensor([3, 4, 5])
| | size = (3)
| |
padded_to_packed_idx | size = (sum(P_n)) | tensor([
| | 0, 1, 2, 5, 6, 7,
| | 8, 10, 11, 12, 13,
| | 14
| | )]
| | size = (12)
-----------------------------------------------------------------------------
# SPHINX IGNORE
"""
_INTERNAL_TENSORS = [