mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-12-14 11:26:24 +08:00
move LinearWithRepeat to pytorch3d
Summary: Move this simple layer from the NeRF project into pytorch3d. Reviewed By: shapovalov Differential Revision: D34126972 fbshipit-source-id: a9c6d6c3c1b662c1b844ea5d1b982007d4df83e6
This commit is contained in:
committed by
Facebook GitHub Bot
parent
ef21a6f6aa
commit
2a1de3b610
@@ -7,10 +7,9 @@
|
||||
from typing import Tuple
|
||||
|
||||
import torch
|
||||
from pytorch3d.common.linear_with_repeat import LinearWithRepeat
|
||||
from pytorch3d.renderer import HarmonicEmbedding, RayBundle, ray_bundle_to_ray_points
|
||||
|
||||
from .linear_with_repeat import LinearWithRepeat
|
||||
|
||||
|
||||
def _xavier_init(linear):
|
||||
"""
|
||||
|
||||
@@ -1,57 +0,0 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
from typing import Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
class LinearWithRepeat(torch.nn.Linear):
|
||||
"""
|
||||
if x has shape (..., k, n1)
|
||||
and y has shape (..., n2)
|
||||
then
|
||||
LinearWithRepeat(n1 + n2, out_features).forward((x,y))
|
||||
is equivalent to
|
||||
Linear(n1 + n2, out_features).forward(
|
||||
torch.cat([x, y.unsqueeze(-2).expand(..., k, n2)], dim=-1)
|
||||
)
|
||||
|
||||
Or visually:
|
||||
Given the following, for each ray,
|
||||
|
||||
feature ->
|
||||
|
||||
ray xxxxxxxx
|
||||
position xxxxxxxx
|
||||
| xxxxxxxx
|
||||
v xxxxxxxx
|
||||
|
||||
|
||||
and
|
||||
yyyyyyyy
|
||||
|
||||
where the y's do not depend on the position
|
||||
but only on the ray,
|
||||
we want to evaluate a Linear layer on both
|
||||
types of data at every position.
|
||||
|
||||
It's as if we constructed
|
||||
|
||||
xxxxxxxxyyyyyyyy
|
||||
xxxxxxxxyyyyyyyy
|
||||
xxxxxxxxyyyyyyyy
|
||||
xxxxxxxxyyyyyyyy
|
||||
|
||||
and sent that through the Linear.
|
||||
"""
|
||||
|
||||
def forward(self, input: Tuple[torch.Tensor, torch.Tensor]) -> torch.Tensor:
|
||||
n1 = input[0].shape[-1]
|
||||
output1 = F.linear(input[0], self.weight[:, :n1], self.bias)
|
||||
output2 = F.linear(input[1], self.weight[:, n1:], None)
|
||||
return output1 + output2.unsqueeze(-2)
|
||||
Reference in New Issue
Block a user