mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-12-19 05:40:34 +08:00
[pytorch3d[ padded to packed function in struct utils
Summary: Added a padded to packed utils function which takes either split sizes or a padding value to remove padded elements from a tensor. Reviewed By: gkioxari Differential Revision: D20454238 fbshipit-source-id: 180b807ff44c74c4ee9d5c1ac3b5c4a9b4be57c7
This commit is contained in:
committed by
Facebook GitHub Bot
parent
4d3c886677
commit
20e457ca0e
@@ -97,6 +97,92 @@ class TestStructUtils(TestCaseMixin, unittest.TestCase):
|
||||
split_size = torch.randint(1, K, size=(N,)).tolist()
|
||||
struct_utils.padded_to_list(x, split_size)
|
||||
|
||||
def test_padded_to_packed(self):
|
||||
device = torch.device("cuda:0")
|
||||
N = 5
|
||||
K = 20
|
||||
ndim = 2
|
||||
dims = [K] * ndim
|
||||
x = torch.rand([N] + dims, device=device)
|
||||
|
||||
# Case 1: no split_size or pad_value provided
|
||||
# Check output is just the flattened input.
|
||||
x_packed = struct_utils.padded_to_packed(x)
|
||||
self.assertTrue(x_packed.shape == (x.shape[0] * x.shape[1], x.shape[2]))
|
||||
self.assertClose(x_packed, x.reshape(-1, K))
|
||||
|
||||
# Case 2: pad_value is provided.
|
||||
# Check each section of the packed tensor matches the
|
||||
# corresponding unpadded elements of the padded tensor.
|
||||
# Check that only rows where all the values are padded
|
||||
# are removed in the conversion to packed.
|
||||
pad_value = -1
|
||||
x_list = []
|
||||
split_size = []
|
||||
for _ in range(N):
|
||||
dim = torch.randint(K, size=(1,)).item()
|
||||
# Add some random values in the input which are the same as the pad_value.
|
||||
# These should not be filtered out.
|
||||
x_list.append(
|
||||
torch.randint(
|
||||
low=pad_value, high=10, size=(dim, K), device=device
|
||||
)
|
||||
)
|
||||
split_size.append(dim)
|
||||
x_padded = struct_utils.list_to_padded(x_list, pad_value=pad_value)
|
||||
x_packed = struct_utils.padded_to_packed(x_padded, pad_value=pad_value)
|
||||
curr = 0
|
||||
for i in range(N):
|
||||
self.assertClose(
|
||||
x_packed[curr : curr + split_size[i], ...], x_list[i]
|
||||
)
|
||||
self.assertClose(torch.cat(x_list), x_packed)
|
||||
curr += split_size[i]
|
||||
|
||||
# Case 3: split_size is provided.
|
||||
# Check each section of the packed tensor matches the corresponding
|
||||
# unpadded elements.
|
||||
x_packed = struct_utils.padded_to_packed(
|
||||
x_padded, split_size=split_size
|
||||
)
|
||||
curr = 0
|
||||
for i in range(N):
|
||||
self.assertClose(
|
||||
x_packed[curr : curr + split_size[i], ...], x_list[i]
|
||||
)
|
||||
self.assertClose(torch.cat(x_list), x_packed)
|
||||
curr += split_size[i]
|
||||
|
||||
# Case 4: split_size of the wrong shape is provided.
|
||||
# Raise an error.
|
||||
split_size = torch.randint(1, K, size=(2 * N,)).view(N, 2).unbind(0)
|
||||
with self.assertRaisesRegex(ValueError, "1-dimensional"):
|
||||
x_packed = struct_utils.padded_to_packed(
|
||||
x_padded, split_size=split_size
|
||||
)
|
||||
|
||||
split_size = torch.randint(1, K, size=(2 * N,)).view(N * 2).tolist()
|
||||
with self.assertRaisesRegex(
|
||||
ValueError, "same length as inputs first dimension"
|
||||
):
|
||||
x_packed = struct_utils.padded_to_packed(
|
||||
x_padded, split_size=split_size
|
||||
)
|
||||
|
||||
# Case 5: both pad_value and split_size are provided.
|
||||
# Raise an error.
|
||||
with self.assertRaisesRegex(ValueError, "Only one of"):
|
||||
x_packed = struct_utils.padded_to_packed(
|
||||
x_padded, split_size=split_size, pad_value=-1
|
||||
)
|
||||
|
||||
# Case 6: Input has more than 3 dims.
|
||||
# Raise an error.
|
||||
with self.assertRaisesRegex(ValueError, "Supports only"):
|
||||
x = torch.rand((N, K, K, K, K), device=device)
|
||||
split_size = torch.randint(1, K, size=(N,)).tolist()
|
||||
struct_utils.padded_to_list(x, split_size)
|
||||
|
||||
def test_list_to_packed(self):
|
||||
device = torch.device("cuda:0")
|
||||
N = 5
|
||||
|
||||
Reference in New Issue
Block a user