Sign issue about quaternion_to_matrix and matrix_to_quaternion

Summary:
As reported on github, `matrix_to_quaternion` was incorrect for rotations by 180˚. We resolved the sign of the component `i` based on the sign of `i*r`, assuming `r > 0`, which is untrue if `r == 0`.

This diff handles special cases and ensures we use the non-zero elements to copy the sign from.

Reviewed By: bottler

Differential Revision: D29149465

fbshipit-source-id: cd508cc31567fc37ea3463dd7e8c8e8d5d64a235
This commit is contained in:
Roman Shapovalov 2021-06-18 06:39:08 -07:00 committed by Facebook GitHub Bot
parent a8610e9da4
commit 1b39cebe92
2 changed files with 89 additions and 17 deletions

View File

@ -82,7 +82,7 @@ def _copysign(a, b):
return torch.where(signs_differ, -a, a)
def _sqrt_positive_part(x):
def _sqrt_positive_part(x: torch.Tensor) -> torch.Tensor:
"""
Returns torch.sqrt(torch.max(0, x))
but with a zero subgradient where x is 0.
@ -93,7 +93,7 @@ def _sqrt_positive_part(x):
return ret
def matrix_to_quaternion(matrix):
def matrix_to_quaternion(matrix: torch.Tensor) -> torch.Tensor:
"""
Convert rotations given as rotation matrices to quaternions.
@ -105,17 +105,44 @@ def matrix_to_quaternion(matrix):
"""
if matrix.size(-1) != 3 or matrix.size(-2) != 3:
raise ValueError(f"Invalid rotation matrix shape f{matrix.shape}.")
m00 = matrix[..., 0, 0]
m11 = matrix[..., 1, 1]
m22 = matrix[..., 2, 2]
o0 = 0.5 * _sqrt_positive_part(1 + m00 + m11 + m22)
x = 0.5 * _sqrt_positive_part(1 + m00 - m11 - m22)
y = 0.5 * _sqrt_positive_part(1 - m00 + m11 - m22)
z = 0.5 * _sqrt_positive_part(1 - m00 - m11 + m22)
o1 = _copysign(x, matrix[..., 2, 1] - matrix[..., 1, 2])
o2 = _copysign(y, matrix[..., 0, 2] - matrix[..., 2, 0])
o3 = _copysign(z, matrix[..., 1, 0] - matrix[..., 0, 1])
return torch.stack((o0, o1, o2, o3), -1)
batch_dim = matrix.shape[:-2]
m00, m01, m02, m10, m11, m12, m20, m21, m22 = torch.unbind(
matrix.reshape(*batch_dim, 9), dim=-1
)
q_abs = _sqrt_positive_part(
torch.stack(
[
1.0 + m00 + m11 + m22,
1.0 + m00 - m11 - m22,
1.0 - m00 + m11 - m22,
1.0 - m00 - m11 + m22,
],
dim=-1,
)
)
# we produce the desired quaternion multiplied by each of r, i, j, k
quat_by_rijk = torch.stack(
[
torch.stack([q_abs[..., 0] ** 2, m21 - m12, m02 - m20, m10 - m01], dim=-1),
torch.stack([m21 - m12, q_abs[..., 1] ** 2, m10 + m01, m02 + m20], dim=-1),
torch.stack([m02 - m20, m10 + m01, q_abs[..., 2] ** 2, m12 + m21], dim=-1),
torch.stack([m10 - m01, m20 + m02, m21 + m12, q_abs[..., 3] ** 2], dim=-1),
],
dim=-2,
)
# clipping is not important here; if q_abs is small, the candidate won't be picked
quat_candidates = quat_by_rijk / (2.0 * q_abs[..., None].clip(0.1))
# if not for numerical problems, quat_candidates[i] should be same (up to a sign),
# forall i; we pick the best-conditioned one (with the largest denominator)
return quat_candidates[
F.one_hot(q_abs.argmax(dim=-1), num_classes=4) > 0.5, : # pyre-ignore[16]
].reshape(*batch_dim, 4)
def _axis_angle_rotation(axis: str, angle):

View File

@ -4,7 +4,9 @@
import itertools
import math
import unittest
from typing import Optional, Union
import numpy as np
import torch
from common_testing import TestCaseMixin
from pytorch3d.transforms.rotation_conversions import (
@ -64,7 +66,7 @@ class TestRotationConversion(TestCaseMixin, unittest.TestCase):
"""quat -> mtx -> quat"""
data = random_quaternions(13, dtype=torch.float64)
mdata = matrix_to_quaternion(quaternion_to_matrix(data))
self.assertClose(data, mdata)
self._assert_quaternions_close(data, mdata)
def test_to_quat(self):
"""mtx -> quat -> mtx"""
@ -146,8 +148,7 @@ class TestRotationConversion(TestCaseMixin, unittest.TestCase):
b_matrix = quaternion_to_matrix(b)
ab_matrix = torch.matmul(a_matrix, b_matrix)
ab_from_matrix = matrix_to_quaternion(ab_matrix)
self.assertEqual(ab.shape, ab_from_matrix.shape)
self.assertClose(ab, ab_from_matrix)
self._assert_quaternions_close(ab, ab_from_matrix)
def test_matrix_to_quaternion_corner_case(self):
"""Check no bad gradients from sqrt(0)."""
@ -161,7 +162,34 @@ class TestRotationConversion(TestCaseMixin, unittest.TestCase):
loss.backward()
optimizer.step()
self.assertClose(matrix, 0.95 * torch.eye(3))
self.assertClose(matrix, matrix, msg="Result has non-finite values")
delta = 1e-2
self.assertLess(
matrix.trace(),
3.0 - delta,
msg="Identity initialisation unchanged by a gradient step",
)
def test_matrix_to_quaternion_by_pi(self):
# We check that rotations by pi around each of the 26
# nonzero vectors containing nothing but 0, 1 and -1
# are mapped to the right quaternions.
# This is representative across the directions.
options = [0.0, -1.0, 1.0]
axes = [
torch.tensor(vec)
for vec in itertools.islice( # exclude [0, 0, 0]
itertools.product(options, options, options), 1, None
)
]
axes = torch.nn.functional.normalize(torch.stack(axes), dim=-1)
# Rotation by pi around unit vector x is given by
# the matrix 2 x x^T - Id.
R = 2 * torch.matmul(axes[..., None], axes[..., None, :]) - torch.eye(3)
quats_hat = matrix_to_quaternion(R)
R_hat = quaternion_to_matrix(quats_hat)
self.assertClose(R, R_hat, atol=1e-3)
def test_from_axis_angle(self):
"""axis_angle -> mtx -> axis_angle"""
@ -228,3 +256,20 @@ class TestRotationConversion(TestCaseMixin, unittest.TestCase):
self.assertClose(
torch.matmul(r, r.permute(0, 2, 1)), torch.eye(3).expand_as(r), atol=1e-6
)
def _assert_quaternions_close(
self,
input: Union[torch.Tensor, np.ndarray],
other: Union[torch.Tensor, np.ndarray],
*,
rtol: float = 1e-05,
atol: float = 1e-08,
equal_nan: bool = False,
msg: Optional[str] = None,
):
self.assertEqual(np.shape(input), np.shape(other))
dot = (input * other).sum(-1)
ones = torch.ones_like(dot)
self.assertClose(
dot.abs(), ones, rtol=rtol, atol=atol, equal_nan=equal_nan, msg=msg
)