Sign issue about quaternion_to_matrix and matrix_to_quaternion

Summary:
As reported on github, `matrix_to_quaternion` was incorrect for rotations by 180˚. We resolved the sign of the component `i` based on the sign of `i*r`, assuming `r > 0`, which is untrue if `r == 0`.

This diff handles special cases and ensures we use the non-zero elements to copy the sign from.

Reviewed By: bottler

Differential Revision: D29149465

fbshipit-source-id: cd508cc31567fc37ea3463dd7e8c8e8d5d64a235
This commit is contained in:
Roman Shapovalov
2021-06-18 06:39:08 -07:00
committed by Facebook GitHub Bot
parent a8610e9da4
commit 1b39cebe92
2 changed files with 89 additions and 17 deletions

View File

@@ -4,7 +4,9 @@
import itertools
import math
import unittest
from typing import Optional, Union
import numpy as np
import torch
from common_testing import TestCaseMixin
from pytorch3d.transforms.rotation_conversions import (
@@ -64,7 +66,7 @@ class TestRotationConversion(TestCaseMixin, unittest.TestCase):
"""quat -> mtx -> quat"""
data = random_quaternions(13, dtype=torch.float64)
mdata = matrix_to_quaternion(quaternion_to_matrix(data))
self.assertClose(data, mdata)
self._assert_quaternions_close(data, mdata)
def test_to_quat(self):
"""mtx -> quat -> mtx"""
@@ -146,8 +148,7 @@ class TestRotationConversion(TestCaseMixin, unittest.TestCase):
b_matrix = quaternion_to_matrix(b)
ab_matrix = torch.matmul(a_matrix, b_matrix)
ab_from_matrix = matrix_to_quaternion(ab_matrix)
self.assertEqual(ab.shape, ab_from_matrix.shape)
self.assertClose(ab, ab_from_matrix)
self._assert_quaternions_close(ab, ab_from_matrix)
def test_matrix_to_quaternion_corner_case(self):
"""Check no bad gradients from sqrt(0)."""
@@ -161,7 +162,34 @@ class TestRotationConversion(TestCaseMixin, unittest.TestCase):
loss.backward()
optimizer.step()
self.assertClose(matrix, 0.95 * torch.eye(3))
self.assertClose(matrix, matrix, msg="Result has non-finite values")
delta = 1e-2
self.assertLess(
matrix.trace(),
3.0 - delta,
msg="Identity initialisation unchanged by a gradient step",
)
def test_matrix_to_quaternion_by_pi(self):
# We check that rotations by pi around each of the 26
# nonzero vectors containing nothing but 0, 1 and -1
# are mapped to the right quaternions.
# This is representative across the directions.
options = [0.0, -1.0, 1.0]
axes = [
torch.tensor(vec)
for vec in itertools.islice( # exclude [0, 0, 0]
itertools.product(options, options, options), 1, None
)
]
axes = torch.nn.functional.normalize(torch.stack(axes), dim=-1)
# Rotation by pi around unit vector x is given by
# the matrix 2 x x^T - Id.
R = 2 * torch.matmul(axes[..., None], axes[..., None, :]) - torch.eye(3)
quats_hat = matrix_to_quaternion(R)
R_hat = quaternion_to_matrix(quats_hat)
self.assertClose(R, R_hat, atol=1e-3)
def test_from_axis_angle(self):
"""axis_angle -> mtx -> axis_angle"""
@@ -228,3 +256,20 @@ class TestRotationConversion(TestCaseMixin, unittest.TestCase):
self.assertClose(
torch.matmul(r, r.permute(0, 2, 1)), torch.eye(3).expand_as(r), atol=1e-6
)
def _assert_quaternions_close(
self,
input: Union[torch.Tensor, np.ndarray],
other: Union[torch.Tensor, np.ndarray],
*,
rtol: float = 1e-05,
atol: float = 1e-08,
equal_nan: bool = False,
msg: Optional[str] = None,
):
self.assertEqual(np.shape(input), np.shape(other))
dot = (input * other).sum(-1)
ones = torch.ones_like(dot)
self.assertClose(
dot.abs(), ones, rtol=rtol, atol=atol, equal_nan=equal_nan, msg=msg
)