Sign issue about quaternion_to_matrix and matrix_to_quaternion

Summary:
As reported on github, `matrix_to_quaternion` was incorrect for rotations by 180˚. We resolved the sign of the component `i` based on the sign of `i*r`, assuming `r > 0`, which is untrue if `r == 0`.

This diff handles special cases and ensures we use the non-zero elements to copy the sign from.

Reviewed By: bottler

Differential Revision: D29149465

fbshipit-source-id: cd508cc31567fc37ea3463dd7e8c8e8d5d64a235
This commit is contained in:
Roman Shapovalov
2021-06-18 06:39:08 -07:00
committed by Facebook GitHub Bot
parent a8610e9da4
commit 1b39cebe92
2 changed files with 89 additions and 17 deletions

View File

@@ -82,7 +82,7 @@ def _copysign(a, b):
return torch.where(signs_differ, -a, a)
def _sqrt_positive_part(x):
def _sqrt_positive_part(x: torch.Tensor) -> torch.Tensor:
"""
Returns torch.sqrt(torch.max(0, x))
but with a zero subgradient where x is 0.
@@ -93,7 +93,7 @@ def _sqrt_positive_part(x):
return ret
def matrix_to_quaternion(matrix):
def matrix_to_quaternion(matrix: torch.Tensor) -> torch.Tensor:
"""
Convert rotations given as rotation matrices to quaternions.
@@ -105,17 +105,44 @@ def matrix_to_quaternion(matrix):
"""
if matrix.size(-1) != 3 or matrix.size(-2) != 3:
raise ValueError(f"Invalid rotation matrix shape f{matrix.shape}.")
m00 = matrix[..., 0, 0]
m11 = matrix[..., 1, 1]
m22 = matrix[..., 2, 2]
o0 = 0.5 * _sqrt_positive_part(1 + m00 + m11 + m22)
x = 0.5 * _sqrt_positive_part(1 + m00 - m11 - m22)
y = 0.5 * _sqrt_positive_part(1 - m00 + m11 - m22)
z = 0.5 * _sqrt_positive_part(1 - m00 - m11 + m22)
o1 = _copysign(x, matrix[..., 2, 1] - matrix[..., 1, 2])
o2 = _copysign(y, matrix[..., 0, 2] - matrix[..., 2, 0])
o3 = _copysign(z, matrix[..., 1, 0] - matrix[..., 0, 1])
return torch.stack((o0, o1, o2, o3), -1)
batch_dim = matrix.shape[:-2]
m00, m01, m02, m10, m11, m12, m20, m21, m22 = torch.unbind(
matrix.reshape(*batch_dim, 9), dim=-1
)
q_abs = _sqrt_positive_part(
torch.stack(
[
1.0 + m00 + m11 + m22,
1.0 + m00 - m11 - m22,
1.0 - m00 + m11 - m22,
1.0 - m00 - m11 + m22,
],
dim=-1,
)
)
# we produce the desired quaternion multiplied by each of r, i, j, k
quat_by_rijk = torch.stack(
[
torch.stack([q_abs[..., 0] ** 2, m21 - m12, m02 - m20, m10 - m01], dim=-1),
torch.stack([m21 - m12, q_abs[..., 1] ** 2, m10 + m01, m02 + m20], dim=-1),
torch.stack([m02 - m20, m10 + m01, q_abs[..., 2] ** 2, m12 + m21], dim=-1),
torch.stack([m10 - m01, m20 + m02, m21 + m12, q_abs[..., 3] ** 2], dim=-1),
],
dim=-2,
)
# clipping is not important here; if q_abs is small, the candidate won't be picked
quat_candidates = quat_by_rijk / (2.0 * q_abs[..., None].clip(0.1))
# if not for numerical problems, quat_candidates[i] should be same (up to a sign),
# forall i; we pick the best-conditioned one (with the largest denominator)
return quat_candidates[
F.one_hot(q_abs.argmax(dim=-1), num_classes=4) > 0.5, : # pyre-ignore[16]
].reshape(*batch_dim, 4)
def _axis_angle_rotation(axis: str, angle):