mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-12-21 14:50:36 +08:00
Sign issue about quaternion_to_matrix and matrix_to_quaternion
Summary: As reported on github, `matrix_to_quaternion` was incorrect for rotations by 180˚. We resolved the sign of the component `i` based on the sign of `i*r`, assuming `r > 0`, which is untrue if `r == 0`. This diff handles special cases and ensures we use the non-zero elements to copy the sign from. Reviewed By: bottler Differential Revision: D29149465 fbshipit-source-id: cd508cc31567fc37ea3463dd7e8c8e8d5d64a235
This commit is contained in:
committed by
Facebook GitHub Bot
parent
a8610e9da4
commit
1b39cebe92
@@ -82,7 +82,7 @@ def _copysign(a, b):
|
||||
return torch.where(signs_differ, -a, a)
|
||||
|
||||
|
||||
def _sqrt_positive_part(x):
|
||||
def _sqrt_positive_part(x: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Returns torch.sqrt(torch.max(0, x))
|
||||
but with a zero subgradient where x is 0.
|
||||
@@ -93,7 +93,7 @@ def _sqrt_positive_part(x):
|
||||
return ret
|
||||
|
||||
|
||||
def matrix_to_quaternion(matrix):
|
||||
def matrix_to_quaternion(matrix: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Convert rotations given as rotation matrices to quaternions.
|
||||
|
||||
@@ -105,17 +105,44 @@ def matrix_to_quaternion(matrix):
|
||||
"""
|
||||
if matrix.size(-1) != 3 or matrix.size(-2) != 3:
|
||||
raise ValueError(f"Invalid rotation matrix shape f{matrix.shape}.")
|
||||
m00 = matrix[..., 0, 0]
|
||||
m11 = matrix[..., 1, 1]
|
||||
m22 = matrix[..., 2, 2]
|
||||
o0 = 0.5 * _sqrt_positive_part(1 + m00 + m11 + m22)
|
||||
x = 0.5 * _sqrt_positive_part(1 + m00 - m11 - m22)
|
||||
y = 0.5 * _sqrt_positive_part(1 - m00 + m11 - m22)
|
||||
z = 0.5 * _sqrt_positive_part(1 - m00 - m11 + m22)
|
||||
o1 = _copysign(x, matrix[..., 2, 1] - matrix[..., 1, 2])
|
||||
o2 = _copysign(y, matrix[..., 0, 2] - matrix[..., 2, 0])
|
||||
o3 = _copysign(z, matrix[..., 1, 0] - matrix[..., 0, 1])
|
||||
return torch.stack((o0, o1, o2, o3), -1)
|
||||
|
||||
batch_dim = matrix.shape[:-2]
|
||||
m00, m01, m02, m10, m11, m12, m20, m21, m22 = torch.unbind(
|
||||
matrix.reshape(*batch_dim, 9), dim=-1
|
||||
)
|
||||
|
||||
q_abs = _sqrt_positive_part(
|
||||
torch.stack(
|
||||
[
|
||||
1.0 + m00 + m11 + m22,
|
||||
1.0 + m00 - m11 - m22,
|
||||
1.0 - m00 + m11 - m22,
|
||||
1.0 - m00 - m11 + m22,
|
||||
],
|
||||
dim=-1,
|
||||
)
|
||||
)
|
||||
|
||||
# we produce the desired quaternion multiplied by each of r, i, j, k
|
||||
quat_by_rijk = torch.stack(
|
||||
[
|
||||
torch.stack([q_abs[..., 0] ** 2, m21 - m12, m02 - m20, m10 - m01], dim=-1),
|
||||
torch.stack([m21 - m12, q_abs[..., 1] ** 2, m10 + m01, m02 + m20], dim=-1),
|
||||
torch.stack([m02 - m20, m10 + m01, q_abs[..., 2] ** 2, m12 + m21], dim=-1),
|
||||
torch.stack([m10 - m01, m20 + m02, m21 + m12, q_abs[..., 3] ** 2], dim=-1),
|
||||
],
|
||||
dim=-2,
|
||||
)
|
||||
|
||||
# clipping is not important here; if q_abs is small, the candidate won't be picked
|
||||
quat_candidates = quat_by_rijk / (2.0 * q_abs[..., None].clip(0.1))
|
||||
|
||||
# if not for numerical problems, quat_candidates[i] should be same (up to a sign),
|
||||
# forall i; we pick the best-conditioned one (with the largest denominator)
|
||||
|
||||
return quat_candidates[
|
||||
F.one_hot(q_abs.argmax(dim=-1), num_classes=4) > 0.5, : # pyre-ignore[16]
|
||||
].reshape(*batch_dim, 4)
|
||||
|
||||
|
||||
def _axis_angle_rotation(axis: str, angle):
|
||||
|
||||
Reference in New Issue
Block a user