mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-12-20 22:30:35 +08:00
Raymarching
Summary: Implements two basic raymarchers. Reviewed By: gkioxari Differential Revision: D24064250 fbshipit-source-id: 18071bd039995336b7410caa403ea29fafb5c66f
This commit is contained in:
committed by
Facebook GitHub Bot
parent
aa9bcaf04c
commit
1af1a36bd6
196
tests/test_raymarching.py
Normal file
196
tests/test_raymarching.py
Normal file
@@ -0,0 +1,196 @@
|
||||
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
|
||||
|
||||
import unittest
|
||||
|
||||
import torch
|
||||
from common_testing import TestCaseMixin
|
||||
from pytorch3d.renderer import AbsorptionOnlyRaymarcher, EmissionAbsorptionRaymarcher
|
||||
|
||||
|
||||
class TestRaymarching(TestCaseMixin, unittest.TestCase):
|
||||
def setUp(self) -> None:
|
||||
torch.manual_seed(42)
|
||||
|
||||
@staticmethod
|
||||
def _init_random_rays(
|
||||
n_rays=10, n_pts_per_ray=9, device="cuda", dtype=torch.float32
|
||||
):
|
||||
"""
|
||||
Generate a batch of ray points with features, densities, and z-coodinates
|
||||
such that their EmissionAbsorption renderring results in
|
||||
feature renders `features_gt`, depth renders `depths_gt`,
|
||||
and opacity renders `opacities_gt`.
|
||||
"""
|
||||
|
||||
# generate trivial ray z-coordinates of sampled points coinciding with
|
||||
# each point's order along a ray.
|
||||
rays_z = torch.arange(n_pts_per_ray, dtype=dtype, device=device)[None].repeat(
|
||||
n_rays, 1
|
||||
)
|
||||
|
||||
# generate ground truth depth values of the underlying surface.
|
||||
depths_gt = torch.randint(
|
||||
low=1, high=n_pts_per_ray + 2, size=(n_rays,)
|
||||
).type_as(rays_z)
|
||||
|
||||
# compute ideal densities that are 0 before the surface and 1 after
|
||||
# the corresponding ground truth depth value
|
||||
rays_densities = (rays_z >= depths_gt[..., None]).type_as(rays_z)[..., None]
|
||||
opacities_gt = (depths_gt < n_pts_per_ray).type_as(rays_z)
|
||||
|
||||
# generate random per-ray features
|
||||
rays_features = torch.rand(
|
||||
(n_rays, n_pts_per_ray, 3), device=rays_z.device, dtype=rays_z.dtype
|
||||
)
|
||||
|
||||
# infer the expected feature render "features_gt"
|
||||
gt_surface = ((rays_z - depths_gt[..., None]).abs() <= 1e-4).type_as(rays_z)
|
||||
features_gt = (rays_features * gt_surface[..., None]).sum(dim=-2)
|
||||
|
||||
return (
|
||||
rays_z,
|
||||
rays_densities,
|
||||
rays_features,
|
||||
depths_gt,
|
||||
features_gt,
|
||||
opacities_gt,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def raymarcher(
|
||||
raymarcher_type=EmissionAbsorptionRaymarcher, n_rays=10, n_pts_per_ray=10
|
||||
):
|
||||
(
|
||||
rays_z,
|
||||
rays_densities,
|
||||
rays_features,
|
||||
depths_gt,
|
||||
features_gt,
|
||||
opacities_gt,
|
||||
) = TestRaymarching._init_random_rays(
|
||||
n_rays=n_rays, n_pts_per_ray=n_pts_per_ray
|
||||
)
|
||||
|
||||
raymarcher = raymarcher_type()
|
||||
|
||||
def run_raymarcher():
|
||||
raymarcher(
|
||||
rays_densities=rays_densities,
|
||||
rays_features=rays_features,
|
||||
rays_z=rays_z,
|
||||
)
|
||||
torch.cuda.synchronize()
|
||||
|
||||
return run_raymarcher
|
||||
|
||||
def test_emission_absorption_inputs(self):
|
||||
"""
|
||||
Test the checks of validity of the inputs to `EmissionAbsorptionRaymarcher`.
|
||||
"""
|
||||
|
||||
# init the EA raymarcher
|
||||
raymarcher_ea = EmissionAbsorptionRaymarcher()
|
||||
|
||||
# bad ways of passing densities and features
|
||||
# [rays_densities, rays_features, rays_z]
|
||||
bad_inputs = [
|
||||
[torch.rand(10, 5, 4), None],
|
||||
[torch.Tensor(3)[0], torch.rand(10, 5, 4)],
|
||||
[1.0, torch.rand(10, 5, 4)],
|
||||
[torch.rand(10, 5, 4), 1.0],
|
||||
[torch.rand(10, 5, 4), None],
|
||||
[torch.rand(10, 5, 4), torch.rand(10, 5, 4)],
|
||||
[torch.rand(10, 5, 4), torch.rand(10, 5, 4, 3)],
|
||||
[torch.rand(10, 5, 4, 3), torch.rand(10, 5, 4, 3)],
|
||||
]
|
||||
|
||||
for bad_input in bad_inputs:
|
||||
with self.assertRaises(ValueError):
|
||||
raymarcher_ea(*bad_input)
|
||||
|
||||
def test_absorption_only_inputs(self):
|
||||
"""
|
||||
Test the checks of validity of the inputs to `AbsorptionOnlyRaymarcher`.
|
||||
"""
|
||||
|
||||
# init the AO raymarcher
|
||||
raymarcher_ao = AbsorptionOnlyRaymarcher()
|
||||
|
||||
# bad ways of passing densities and features
|
||||
# [rays_densities, rays_features, rays_z]
|
||||
bad_inputs = [[torch.Tensor(3)[0]]]
|
||||
|
||||
for bad_input in bad_inputs:
|
||||
with self.assertRaises(ValueError):
|
||||
raymarcher_ao(*bad_input)
|
||||
|
||||
def test_emission_absorption(self):
|
||||
"""
|
||||
Test the EA raymarching algorithm.
|
||||
"""
|
||||
(
|
||||
rays_z,
|
||||
rays_densities,
|
||||
rays_features,
|
||||
depths_gt,
|
||||
features_gt,
|
||||
opacities_gt,
|
||||
) = TestRaymarching._init_random_rays(
|
||||
n_rays=1000, n_pts_per_ray=9, device=None, dtype=torch.float32
|
||||
)
|
||||
|
||||
# init the EA raymarcher
|
||||
raymarcher_ea = EmissionAbsorptionRaymarcher()
|
||||
|
||||
# allow gradients for a differentiability check
|
||||
rays_densities.requires_grad = True
|
||||
rays_features.requires_grad = True
|
||||
|
||||
# render the features first and check with gt
|
||||
data_render = raymarcher_ea(rays_densities, rays_features)
|
||||
features_render, opacities_render = data_render[..., :-1], data_render[..., -1]
|
||||
self.assertClose(opacities_render, opacities_gt)
|
||||
self.assertClose(
|
||||
features_render * opacities_render[..., None],
|
||||
features_gt * opacities_gt[..., None],
|
||||
)
|
||||
|
||||
# get the depth map by rendering the ray z components and check with gt
|
||||
depths_render = raymarcher_ea(rays_densities, rays_z[..., None])[..., 0]
|
||||
self.assertClose(depths_render * opacities_render, depths_gt * opacities_gt)
|
||||
|
||||
# check differentiability
|
||||
loss = features_render.mean()
|
||||
loss.backward()
|
||||
for field in (rays_densities, rays_features):
|
||||
self.assertTrue(field.grad.data.isfinite().all())
|
||||
|
||||
def test_absorption_only(self):
|
||||
"""
|
||||
Test the AO raymarching algorithm.
|
||||
"""
|
||||
(
|
||||
rays_z,
|
||||
rays_densities,
|
||||
rays_features,
|
||||
depths_gt,
|
||||
features_gt,
|
||||
opacities_gt,
|
||||
) = TestRaymarching._init_random_rays(
|
||||
n_rays=1000, n_pts_per_ray=9, device=None, dtype=torch.float32
|
||||
)
|
||||
|
||||
# init the AO raymarcher
|
||||
raymarcher_ao = AbsorptionOnlyRaymarcher()
|
||||
|
||||
# allow gradients for a differentiability check
|
||||
rays_densities.requires_grad = True
|
||||
|
||||
# render opacities, check with gt and check that returned features are None
|
||||
opacities_render = raymarcher_ao(rays_densities)[..., 0]
|
||||
self.assertClose(opacities_render, opacities_gt)
|
||||
|
||||
# check differentiability
|
||||
loss = opacities_render.mean()
|
||||
loss.backward()
|
||||
self.assertTrue(rays_densities.grad.data.isfinite().all())
|
||||
Reference in New Issue
Block a user