allow cameras to be None in rasterizer initialization

Summary: Fix to enable a mesh/point rasterizer to be initialized without having to specify the camera.

Reviewed By: jcjohnson, gkioxari

Differential Revision: D21362359

fbshipit-source-id: 4f84ea18ad9f179c7b7c2289ebf9422a2f5e26de
This commit is contained in:
Nikhila Ravi
2020-05-05 22:29:38 -07:00
committed by Facebook GitHub Bot
parent 9c5ab57156
commit 17ca6ecd81
5 changed files with 151 additions and 26 deletions

View File

@@ -9,6 +9,11 @@ import torch
from PIL import Image
from pytorch3d.renderer.cameras import OpenGLPerspectiveCameras, look_at_view_transform
from pytorch3d.renderer.mesh.rasterizer import MeshRasterizer, RasterizationSettings
from pytorch3d.renderer.points.rasterizer import (
PointsRasterizationSettings,
PointsRasterizer,
)
from pytorch3d.structures import Pointclouds
from pytorch3d.utils.ico_sphere import ico_sphere
@@ -99,3 +104,101 @@ class TestMeshRasterizer(unittest.TestCase):
DATA_DIR / "DEBUG_test_rasterized_sphere_zoom.png"
)
self.assertTrue(torch.allclose(image, image_ref))
#################################
# 4. Test init without cameras.
##################################
# Create a new empty rasterizer:
rasterizer = MeshRasterizer()
# Check that omitting the cameras in both initialization
# and the forward pass throws an error:
with self.assertRaisesRegex(ValueError, "Cameras must be specified"):
rasterizer(sphere_mesh)
# Now pass in the cameras as a kwarg
fragments = rasterizer(
sphere_mesh, cameras=cameras, raster_settings=raster_settings
)
image = fragments.pix_to_face[0, ..., 0].squeeze().cpu()
# Convert pix_to_face to a binary mask
image[image >= 0] = 1.0
image[image < 0] = 0.0
if DEBUG:
Image.fromarray((image.numpy() * 255).astype(np.uint8)).save(
DATA_DIR / "DEBUG_test_rasterized_sphere.png"
)
self.assertTrue(torch.allclose(image, image_ref))
class TestPointRasterizer(unittest.TestCase):
def test_simple_sphere(self):
device = torch.device("cuda:0")
# Load reference image
ref_filename = "test_simple_pointcloud_sphere.png"
image_ref_filename = DATA_DIR / ref_filename
# Rescale image_ref to the 0 - 1 range and convert to a binary mask.
image_ref = convert_image_to_binary_mask(image_ref_filename).to(torch.int32)
sphere_mesh = ico_sphere(1, device)
verts_padded = sphere_mesh.verts_padded()
verts_padded[..., 1] += 0.2
verts_padded[..., 0] += 0.2
pointclouds = Pointclouds(points=verts_padded)
R, T = look_at_view_transform(2.7, 0.0, 0.0)
cameras = OpenGLPerspectiveCameras(device=device, R=R, T=T)
raster_settings = PointsRasterizationSettings(
image_size=256, radius=5e-2, points_per_pixel=1
)
#################################
# 1. Test init without cameras.
##################################
# Initialize without passing in the cameras
rasterizer = PointsRasterizer()
# Check that omitting the cameras in both initialization
# and the forward pass throws an error:
with self.assertRaisesRegex(ValueError, "Cameras must be specified"):
rasterizer(pointclouds)
##########################################
# 2. Test rasterizing a single pointcloud
##########################################
fragments = rasterizer(
pointclouds, cameras=cameras, raster_settings=raster_settings
)
# Convert idx to a binary mask
image = fragments.idx[0, ..., 0].squeeze().cpu()
image[image >= 0] = 1.0
image[image < 0] = 0.0
if DEBUG:
Image.fromarray((image.numpy() * 255).astype(np.uint8)).save(
DATA_DIR / "DEBUG_test_rasterized_sphere_points.png"
)
self.assertTrue(torch.allclose(image, image_ref[..., 0]))
########################################
# 3. Test with a batch of pointclouds
########################################
batch_size = 10
pointclouds = pointclouds.extend(batch_size)
fragments = rasterizer(
pointclouds, cameras=cameras, raster_settings=raster_settings
)
for i in range(batch_size):
image = fragments.idx[i, ..., 0].squeeze().cpu()
image[image >= 0] = 1.0
image[image < 0] = 0.0
self.assertTrue(torch.allclose(image, image_ref[..., 0]))