provide cow dataset

Summary: Make a dummy single-scene dataset using the code from generate_cow_renders (used in existing NeRF tutorials)

Reviewed By: kjchalup

Differential Revision: D38116910

fbshipit-source-id: 8db6df7098aa221c81d392e5cd21b0e67f65bd70
This commit is contained in:
Jeremy Reizenstein
2022-08-01 01:52:12 -07:00
committed by Facebook GitHub Bot
parent 1b0584f7bd
commit 14bd5e28e8
9 changed files with 302 additions and 5 deletions

View File

@@ -2,6 +2,6 @@
This is copied version of docs/tutorials/data/cow_mesh with removed line 6159 (usemtl material_1) to test behavior without usemtl material_1 declaration.
Thank you to Keenen Crane for allowing the cow mesh model to be used freely in the public domain.
Thank you to Keenan Crane for allowing the cow mesh model to be used freely in the public domain.
###### Source: http://www.cs.cmu.edu/~kmcrane/Projects/ModelRepository/

View File

@@ -90,6 +90,15 @@ dataset_map_provider_LlffDatasetMapProvider_args:
n_known_frames_for_test: null
path_manager_factory_PathManagerFactory_args:
silence_logs: true
dataset_map_provider_RenderedMeshDatasetMapProvider_args:
num_views: 40
data_file: null
azimuth_range: 180.0
resolution: 128
use_point_light: true
path_manager_factory_class_type: PathManagerFactory
path_manager_factory_PathManagerFactory_args:
silence_logs: true
data_loader_map_provider_SequenceDataLoaderMapProvider_args:
batch_size: 1
num_workers: 0

View File

@@ -0,0 +1,57 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import os
import unittest
import torch
from pytorch3d.implicitron.dataset.dataset_base import FrameData
from pytorch3d.implicitron.dataset.rendered_mesh_dataset_map_provider import (
RenderedMeshDatasetMapProvider,
)
from pytorch3d.implicitron.tools.config import expand_args_fields
from pytorch3d.renderer import FoVPerspectiveCameras
from tests.common_testing import TestCaseMixin
inside_re_worker = os.environ.get("INSIDE_RE_WORKER", False)
class TestDataCow(TestCaseMixin, unittest.TestCase):
def test_simple(self):
if inside_re_worker:
return
expand_args_fields(RenderedMeshDatasetMapProvider)
self._runtest(use_point_light=True, num_views=4)
self._runtest(use_point_light=False, num_views=4)
def _runtest(self, **kwargs):
provider = RenderedMeshDatasetMapProvider(**kwargs)
dataset_map = provider.get_dataset_map()
known_matrix = torch.zeros(1, 4, 4)
known_matrix[0, 0, 0] = 1.7321
known_matrix[0, 1, 1] = 1.7321
known_matrix[0, 2, 2] = 1.0101
known_matrix[0, 3, 2] = -1.0101
known_matrix[0, 2, 3] = 1
self.assertIsNone(dataset_map.val)
self.assertIsNone(dataset_map.test)
self.assertEqual(len(dataset_map.train), provider.num_views)
value = dataset_map.train[0]
self.assertIsInstance(value, FrameData)
self.assertEqual(value.image_rgb.shape, (3, 128, 128))
self.assertEqual(value.fg_probability.shape, (1, 128, 128))
# corner of image is background
self.assertEqual(value.fg_probability[0, 0, 0], 0)
self.assertEqual(value.fg_probability.max(), 1.0)
self.assertIsInstance(value.camera, FoVPerspectiveCameras)
self.assertEqual(len(value.camera), 1)
self.assertIsNone(value.camera.K)
matrix = value.camera.get_projection_transform().get_matrix()
self.assertClose(matrix, known_matrix, atol=1e-4)