mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-03 04:12:48 +08:00
Convert from Pytorch3D NDC coordinates to grid_sample coordinates.
Summary: Implements a utility function to convert from 2D coordinates in Pytorch3D NDC space to the coordinates in grid_sample. Reviewed By: shapovalov Differential Revision: D33741394 fbshipit-source-id: 88981653356588fe646e6dea48fe7f7298738437
This commit is contained in:
parent
47c0997227
commit
12f20d799e
@ -70,7 +70,12 @@ from .points import (
|
|||||||
PulsarPointsRenderer,
|
PulsarPointsRenderer,
|
||||||
rasterize_points,
|
rasterize_points,
|
||||||
)
|
)
|
||||||
from .utils import TensorProperties, convert_to_tensors_and_broadcast
|
from .utils import (
|
||||||
|
TensorProperties,
|
||||||
|
convert_to_tensors_and_broadcast,
|
||||||
|
ndc_to_grid_sample_coords,
|
||||||
|
ndc_grid_sample,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
__all__ = [k for k in globals().keys() if not k.startswith("_")]
|
__all__ = [k for k in globals().keys() if not k.startswith("_")]
|
||||||
|
@ -8,7 +8,7 @@
|
|||||||
import copy
|
import copy
|
||||||
import inspect
|
import inspect
|
||||||
import warnings
|
import warnings
|
||||||
from typing import Any, Optional, Union
|
from typing import Any, Optional, Union, Tuple
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
@ -350,3 +350,80 @@ def convert_to_tensors_and_broadcast(
|
|||||||
args_Nd.append(c.expand(*expand_sizes))
|
args_Nd.append(c.expand(*expand_sizes))
|
||||||
|
|
||||||
return args_Nd
|
return args_Nd
|
||||||
|
|
||||||
|
|
||||||
|
def ndc_grid_sample(
|
||||||
|
input: torch.Tensor,
|
||||||
|
grid_ndc: torch.Tensor,
|
||||||
|
**grid_sample_kwargs,
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Samples a tensor `input` of shape `(B, dim, H, W)` at 2D locations
|
||||||
|
specified by a tensor `grid_ndc` of shape `(B, ..., 2)` using
|
||||||
|
the `torch.nn.functional.grid_sample` function.
|
||||||
|
`grid_ndc` is specified in PyTorch3D NDC coordinate frame.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
input: The tensor of shape `(B, dim, H, W)` to be sampled.
|
||||||
|
grid_ndc: A tensor of shape `(B, ..., 2)` denoting the set of
|
||||||
|
2D locations at which `input` is sampled.
|
||||||
|
See [1] for a detailed description of the NDC coordinates.
|
||||||
|
grid_sample_kwargs: Additional arguments forwarded to the
|
||||||
|
`torch.nn.functional.grid_sample` call. See the corresponding
|
||||||
|
docstring for a listing of the corresponding arguments.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
sampled_input: A tensor of shape `(B, dim, ...)` containing the samples
|
||||||
|
of `input` at 2D locations `grid_ndc`.
|
||||||
|
|
||||||
|
References:
|
||||||
|
[1] https://pytorch3d.org/docs/cameras
|
||||||
|
"""
|
||||||
|
|
||||||
|
batch, *spatial_size, pt_dim = grid_ndc.shape
|
||||||
|
if batch != input.shape[0]:
|
||||||
|
raise ValueError("'input' and 'grid_ndc' have to have the same batch size.")
|
||||||
|
if input.ndim != 4:
|
||||||
|
raise ValueError("'input' has to be a 4-dimensional Tensor.")
|
||||||
|
if pt_dim != 2:
|
||||||
|
raise ValueError("The last dimension of 'grid_ndc' has to be == 2.")
|
||||||
|
|
||||||
|
grid_ndc_flat = grid_ndc.reshape(batch, -1, 1, 2)
|
||||||
|
|
||||||
|
grid_flat = ndc_to_grid_sample_coords(grid_ndc_flat, input.shape[2:])
|
||||||
|
|
||||||
|
sampled_input_flat = torch.nn.functional.grid_sample(
|
||||||
|
input, grid_flat, **grid_sample_kwargs
|
||||||
|
)
|
||||||
|
|
||||||
|
sampled_input = sampled_input_flat.reshape([batch, input.shape[1], *spatial_size])
|
||||||
|
|
||||||
|
return sampled_input
|
||||||
|
|
||||||
|
|
||||||
|
def ndc_to_grid_sample_coords(
|
||||||
|
xy_ndc: torch.Tensor,
|
||||||
|
image_size_hw: Tuple[int, int],
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Convert from the PyTorch3D's NDC coordinates to
|
||||||
|
`torch.nn.functional.grid_sampler`'s coordinates.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
xy_ndc: Tensor of shape `(..., 2)` containing 2D points in the
|
||||||
|
PyTorch3D's NDC coordinates.
|
||||||
|
image_size_hw: A tuple `(image_height, image_width)` denoting the
|
||||||
|
height and width of the image tensor to sample.
|
||||||
|
Returns:
|
||||||
|
xy_grid_sample: Tensor of shape `(..., 2)` containing 2D points in the
|
||||||
|
`torch.nn.functional.grid_sample` coordinates.
|
||||||
|
"""
|
||||||
|
if len(image_size_hw) != 2 or any(s <= 0 for s in image_size_hw):
|
||||||
|
raise ValueError("'image_size_hw' has to be a 2-tuple of positive integers")
|
||||||
|
aspect = min(image_size_hw) / max(image_size_hw)
|
||||||
|
xy_grid_sample = -xy_ndc # first negate the coords
|
||||||
|
if image_size_hw[0] >= image_size_hw[1]:
|
||||||
|
xy_grid_sample[..., 1] *= aspect
|
||||||
|
else:
|
||||||
|
xy_grid_sample[..., 0] *= aspect
|
||||||
|
return xy_grid_sample
|
||||||
|
@ -10,7 +10,20 @@ import unittest
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
from common_testing import TestCaseMixin
|
from common_testing import TestCaseMixin
|
||||||
from pytorch3d.renderer.utils import TensorProperties
|
from pytorch3d.ops import eyes
|
||||||
|
from pytorch3d.renderer import (
|
||||||
|
PerspectiveCameras,
|
||||||
|
AlphaCompositor,
|
||||||
|
PointsRenderer,
|
||||||
|
PointsRasterizationSettings,
|
||||||
|
PointsRasterizer,
|
||||||
|
)
|
||||||
|
from pytorch3d.renderer.utils import (
|
||||||
|
TensorProperties,
|
||||||
|
ndc_to_grid_sample_coords,
|
||||||
|
ndc_grid_sample,
|
||||||
|
)
|
||||||
|
from pytorch3d.structures import Pointclouds
|
||||||
|
|
||||||
|
|
||||||
# Example class for testing
|
# Example class for testing
|
||||||
@ -96,3 +109,165 @@ class TestTensorProperties(TestCaseMixin, unittest.TestCase):
|
|||||||
# the input.
|
# the input.
|
||||||
self.assertClose(test_class_gathered.x[inds].mean(dim=0), x[i, ...])
|
self.assertClose(test_class_gathered.x[inds].mean(dim=0), x[i, ...])
|
||||||
self.assertClose(test_class_gathered.y[inds].mean(dim=0), y[i, ...])
|
self.assertClose(test_class_gathered.y[inds].mean(dim=0), y[i, ...])
|
||||||
|
|
||||||
|
def test_ndc_grid_sample_rendering(self):
|
||||||
|
"""
|
||||||
|
Use PyTorch3D point renderer to render a colored point cloud, then
|
||||||
|
sample the image at the locations of the point projections with
|
||||||
|
`ndc_grid_sample`. Finally, assert that the sampled colors are equal to the
|
||||||
|
original point cloud colors.
|
||||||
|
|
||||||
|
Note that, in order to ensure correctness, we use a nearest-neighbor
|
||||||
|
assignment point renderer (i.e. no soft splatting).
|
||||||
|
"""
|
||||||
|
|
||||||
|
# generate a bunch of 3D points on a regular grid lying in the z-plane
|
||||||
|
n_grid_pts = 10
|
||||||
|
grid_scale = 0.9
|
||||||
|
z_plane = 2.0
|
||||||
|
image_size = [128, 128]
|
||||||
|
point_radius = 0.015
|
||||||
|
n_pts = n_grid_pts * n_grid_pts
|
||||||
|
pts = torch.stack(
|
||||||
|
torch.meshgrid(
|
||||||
|
[torch.linspace(-grid_scale, grid_scale, n_grid_pts)] * 2, indexing="ij"
|
||||||
|
),
|
||||||
|
dim=-1,
|
||||||
|
)
|
||||||
|
pts = torch.cat([pts, z_plane * torch.ones_like(pts[..., :1])], dim=-1)
|
||||||
|
pts = pts.reshape(1, n_pts, 3)
|
||||||
|
|
||||||
|
# color the points randomly
|
||||||
|
pts_colors = torch.rand(1, n_pts, 3)
|
||||||
|
|
||||||
|
# make trivial rendering cameras
|
||||||
|
cameras = PerspectiveCameras(
|
||||||
|
R=eyes(dim=3, N=1),
|
||||||
|
device=pts.device,
|
||||||
|
T=torch.zeros(1, 3, dtype=torch.float32, device=pts.device),
|
||||||
|
)
|
||||||
|
|
||||||
|
# render the point cloud
|
||||||
|
pcl = Pointclouds(points=pts, features=pts_colors)
|
||||||
|
renderer = NearestNeighborPointsRenderer(
|
||||||
|
rasterizer=PointsRasterizer(
|
||||||
|
cameras=cameras,
|
||||||
|
raster_settings=PointsRasterizationSettings(
|
||||||
|
image_size=image_size,
|
||||||
|
radius=point_radius,
|
||||||
|
points_per_pixel=1,
|
||||||
|
),
|
||||||
|
),
|
||||||
|
compositor=AlphaCompositor(),
|
||||||
|
)
|
||||||
|
im_render = renderer(pcl)
|
||||||
|
|
||||||
|
# sample the render at projected pts
|
||||||
|
pts_proj = cameras.transform_points(pcl.points_padded())[..., :2]
|
||||||
|
pts_colors_sampled = ndc_grid_sample(
|
||||||
|
im_render,
|
||||||
|
pts_proj,
|
||||||
|
mode="nearest",
|
||||||
|
align_corners=False,
|
||||||
|
).permute(0, 2, 1)
|
||||||
|
|
||||||
|
# assert that the samples are the same as original points
|
||||||
|
self.assertClose(pts_colors, pts_colors_sampled, atol=1e-4)
|
||||||
|
|
||||||
|
def test_ndc_to_grid_sample_coords(self):
|
||||||
|
"""
|
||||||
|
Test the conversion from ndc to grid_sample coords by comparing
|
||||||
|
to known conversion results.
|
||||||
|
"""
|
||||||
|
|
||||||
|
# square image tests
|
||||||
|
image_size_square = [100, 100]
|
||||||
|
xy_ndc_gs_square = torch.FloatTensor(
|
||||||
|
[
|
||||||
|
# 4 corners
|
||||||
|
[[-1.0, -1.0], [1.0, 1.0]],
|
||||||
|
[[1.0, 1.0], [-1.0, -1.0]],
|
||||||
|
[[1.0, -1.0], [-1.0, 1.0]],
|
||||||
|
[[1.0, 1.0], [-1.0, -1.0]],
|
||||||
|
# center
|
||||||
|
[[0.0, 0.0], [0.0, 0.0]],
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
# non-batched version
|
||||||
|
for xy_ndc, xy_gs in xy_ndc_gs_square:
|
||||||
|
xy_gs_predicted = ndc_to_grid_sample_coords(
|
||||||
|
xy_ndc,
|
||||||
|
image_size_square,
|
||||||
|
)
|
||||||
|
self.assertClose(xy_gs_predicted, xy_gs)
|
||||||
|
|
||||||
|
# batched version
|
||||||
|
xy_ndc, xy_gs = xy_ndc_gs_square[:, 0], xy_ndc_gs_square[:, 1]
|
||||||
|
xy_gs_predicted = ndc_to_grid_sample_coords(
|
||||||
|
xy_ndc,
|
||||||
|
image_size_square,
|
||||||
|
)
|
||||||
|
self.assertClose(xy_gs_predicted, xy_gs)
|
||||||
|
|
||||||
|
# non-square image tests
|
||||||
|
image_size = [100, 200]
|
||||||
|
xy_ndc_gs = torch.FloatTensor(
|
||||||
|
[
|
||||||
|
# 4 corners
|
||||||
|
[[-2.0, -1.0], [1.0, 1.0]],
|
||||||
|
[[2.0, -1.0], [-1.0, 1.0]],
|
||||||
|
[[-2.0, 1.0], [1.0, -1.0]],
|
||||||
|
[[2.0, 1.0], [-1.0, -1.0]],
|
||||||
|
# center
|
||||||
|
[[0.0, 0.0], [0.0, 0.0]],
|
||||||
|
# non-corner points
|
||||||
|
[[4.0, 0.5], [-2.0, -0.5]],
|
||||||
|
[[1.0, -0.5], [-0.5, 0.5]],
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
# check both H > W and W > H
|
||||||
|
for flip_axes in [False, True]:
|
||||||
|
|
||||||
|
# non-batched version
|
||||||
|
for xy_ndc, xy_gs in xy_ndc_gs:
|
||||||
|
xy_gs_predicted = ndc_to_grid_sample_coords(
|
||||||
|
xy_ndc.flip(dims=(-1,)) if flip_axes else xy_ndc,
|
||||||
|
list(reversed(image_size)) if flip_axes else image_size,
|
||||||
|
)
|
||||||
|
self.assertClose(
|
||||||
|
xy_gs_predicted,
|
||||||
|
xy_gs.flip(dims=(-1,)) if flip_axes else xy_gs,
|
||||||
|
)
|
||||||
|
|
||||||
|
# batched version
|
||||||
|
xy_ndc, xy_gs = xy_ndc_gs[:, 0], xy_ndc_gs[:, 1]
|
||||||
|
xy_gs_predicted = ndc_to_grid_sample_coords(
|
||||||
|
xy_ndc.flip(dims=(-1,)) if flip_axes else xy_ndc,
|
||||||
|
list(reversed(image_size)) if flip_axes else image_size,
|
||||||
|
)
|
||||||
|
self.assertClose(
|
||||||
|
xy_gs_predicted,
|
||||||
|
xy_gs.flip(dims=(-1,)) if flip_axes else xy_gs,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class NearestNeighborPointsRenderer(PointsRenderer):
|
||||||
|
"""
|
||||||
|
A class for rendering a batch of points by a trivial nearest
|
||||||
|
neighbor assignment.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def forward(self, point_clouds, **kwargs) -> torch.Tensor:
|
||||||
|
fragments = self.rasterizer(point_clouds, **kwargs)
|
||||||
|
# set all weights trivially to one
|
||||||
|
dists2 = fragments.dists.permute(0, 3, 1, 2)
|
||||||
|
weights = torch.ones_like(dists2)
|
||||||
|
images = self.compositor(
|
||||||
|
fragments.idx.long().permute(0, 3, 1, 2),
|
||||||
|
weights,
|
||||||
|
point_clouds.features_packed().permute(1, 0),
|
||||||
|
**kwargs,
|
||||||
|
)
|
||||||
|
return images
|
||||||
|
Loading…
x
Reference in New Issue
Block a user