Convert from Pytorch3D NDC coordinates to grid_sample coordinates.

Summary: Implements a utility function to convert from 2D coordinates in Pytorch3D NDC space to the coordinates in grid_sample.

Reviewed By: shapovalov

Differential Revision: D33741394

fbshipit-source-id: 88981653356588fe646e6dea48fe7f7298738437
This commit is contained in:
David Novotny
2022-02-09 12:48:47 -08:00
committed by Facebook GitHub Bot
parent 47c0997227
commit 12f20d799e
3 changed files with 260 additions and 3 deletions

View File

@@ -10,7 +10,20 @@ import unittest
import numpy as np
import torch
from common_testing import TestCaseMixin
from pytorch3d.renderer.utils import TensorProperties
from pytorch3d.ops import eyes
from pytorch3d.renderer import (
PerspectiveCameras,
AlphaCompositor,
PointsRenderer,
PointsRasterizationSettings,
PointsRasterizer,
)
from pytorch3d.renderer.utils import (
TensorProperties,
ndc_to_grid_sample_coords,
ndc_grid_sample,
)
from pytorch3d.structures import Pointclouds
# Example class for testing
@@ -96,3 +109,165 @@ class TestTensorProperties(TestCaseMixin, unittest.TestCase):
# the input.
self.assertClose(test_class_gathered.x[inds].mean(dim=0), x[i, ...])
self.assertClose(test_class_gathered.y[inds].mean(dim=0), y[i, ...])
def test_ndc_grid_sample_rendering(self):
"""
Use PyTorch3D point renderer to render a colored point cloud, then
sample the image at the locations of the point projections with
`ndc_grid_sample`. Finally, assert that the sampled colors are equal to the
original point cloud colors.
Note that, in order to ensure correctness, we use a nearest-neighbor
assignment point renderer (i.e. no soft splatting).
"""
# generate a bunch of 3D points on a regular grid lying in the z-plane
n_grid_pts = 10
grid_scale = 0.9
z_plane = 2.0
image_size = [128, 128]
point_radius = 0.015
n_pts = n_grid_pts * n_grid_pts
pts = torch.stack(
torch.meshgrid(
[torch.linspace(-grid_scale, grid_scale, n_grid_pts)] * 2, indexing="ij"
),
dim=-1,
)
pts = torch.cat([pts, z_plane * torch.ones_like(pts[..., :1])], dim=-1)
pts = pts.reshape(1, n_pts, 3)
# color the points randomly
pts_colors = torch.rand(1, n_pts, 3)
# make trivial rendering cameras
cameras = PerspectiveCameras(
R=eyes(dim=3, N=1),
device=pts.device,
T=torch.zeros(1, 3, dtype=torch.float32, device=pts.device),
)
# render the point cloud
pcl = Pointclouds(points=pts, features=pts_colors)
renderer = NearestNeighborPointsRenderer(
rasterizer=PointsRasterizer(
cameras=cameras,
raster_settings=PointsRasterizationSettings(
image_size=image_size,
radius=point_radius,
points_per_pixel=1,
),
),
compositor=AlphaCompositor(),
)
im_render = renderer(pcl)
# sample the render at projected pts
pts_proj = cameras.transform_points(pcl.points_padded())[..., :2]
pts_colors_sampled = ndc_grid_sample(
im_render,
pts_proj,
mode="nearest",
align_corners=False,
).permute(0, 2, 1)
# assert that the samples are the same as original points
self.assertClose(pts_colors, pts_colors_sampled, atol=1e-4)
def test_ndc_to_grid_sample_coords(self):
"""
Test the conversion from ndc to grid_sample coords by comparing
to known conversion results.
"""
# square image tests
image_size_square = [100, 100]
xy_ndc_gs_square = torch.FloatTensor(
[
# 4 corners
[[-1.0, -1.0], [1.0, 1.0]],
[[1.0, 1.0], [-1.0, -1.0]],
[[1.0, -1.0], [-1.0, 1.0]],
[[1.0, 1.0], [-1.0, -1.0]],
# center
[[0.0, 0.0], [0.0, 0.0]],
]
)
# non-batched version
for xy_ndc, xy_gs in xy_ndc_gs_square:
xy_gs_predicted = ndc_to_grid_sample_coords(
xy_ndc,
image_size_square,
)
self.assertClose(xy_gs_predicted, xy_gs)
# batched version
xy_ndc, xy_gs = xy_ndc_gs_square[:, 0], xy_ndc_gs_square[:, 1]
xy_gs_predicted = ndc_to_grid_sample_coords(
xy_ndc,
image_size_square,
)
self.assertClose(xy_gs_predicted, xy_gs)
# non-square image tests
image_size = [100, 200]
xy_ndc_gs = torch.FloatTensor(
[
# 4 corners
[[-2.0, -1.0], [1.0, 1.0]],
[[2.0, -1.0], [-1.0, 1.0]],
[[-2.0, 1.0], [1.0, -1.0]],
[[2.0, 1.0], [-1.0, -1.0]],
# center
[[0.0, 0.0], [0.0, 0.0]],
# non-corner points
[[4.0, 0.5], [-2.0, -0.5]],
[[1.0, -0.5], [-0.5, 0.5]],
]
)
# check both H > W and W > H
for flip_axes in [False, True]:
# non-batched version
for xy_ndc, xy_gs in xy_ndc_gs:
xy_gs_predicted = ndc_to_grid_sample_coords(
xy_ndc.flip(dims=(-1,)) if flip_axes else xy_ndc,
list(reversed(image_size)) if flip_axes else image_size,
)
self.assertClose(
xy_gs_predicted,
xy_gs.flip(dims=(-1,)) if flip_axes else xy_gs,
)
# batched version
xy_ndc, xy_gs = xy_ndc_gs[:, 0], xy_ndc_gs[:, 1]
xy_gs_predicted = ndc_to_grid_sample_coords(
xy_ndc.flip(dims=(-1,)) if flip_axes else xy_ndc,
list(reversed(image_size)) if flip_axes else image_size,
)
self.assertClose(
xy_gs_predicted,
xy_gs.flip(dims=(-1,)) if flip_axes else xy_gs,
)
class NearestNeighborPointsRenderer(PointsRenderer):
"""
A class for rendering a batch of points by a trivial nearest
neighbor assignment.
"""
def forward(self, point_clouds, **kwargs) -> torch.Tensor:
fragments = self.rasterizer(point_clouds, **kwargs)
# set all weights trivially to one
dists2 = fragments.dists.permute(0, 3, 1, 2)
weights = torch.ones_like(dists2)
images = self.compositor(
fragments.idx.long().permute(0, 3, 1, 2),
weights,
point_clouds.features_packed().permute(1, 0),
**kwargs,
)
return images