mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-12-20 06:10:34 +08:00
Convert from Pytorch3D NDC coordinates to grid_sample coordinates.
Summary: Implements a utility function to convert from 2D coordinates in Pytorch3D NDC space to the coordinates in grid_sample. Reviewed By: shapovalov Differential Revision: D33741394 fbshipit-source-id: 88981653356588fe646e6dea48fe7f7298738437
This commit is contained in:
committed by
Facebook GitHub Bot
parent
47c0997227
commit
12f20d799e
@@ -70,7 +70,12 @@ from .points import (
|
||||
PulsarPointsRenderer,
|
||||
rasterize_points,
|
||||
)
|
||||
from .utils import TensorProperties, convert_to_tensors_and_broadcast
|
||||
from .utils import (
|
||||
TensorProperties,
|
||||
convert_to_tensors_and_broadcast,
|
||||
ndc_to_grid_sample_coords,
|
||||
ndc_grid_sample,
|
||||
)
|
||||
|
||||
|
||||
__all__ = [k for k in globals().keys() if not k.startswith("_")]
|
||||
|
||||
@@ -8,7 +8,7 @@
|
||||
import copy
|
||||
import inspect
|
||||
import warnings
|
||||
from typing import Any, Optional, Union
|
||||
from typing import Any, Optional, Union, Tuple
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
@@ -350,3 +350,80 @@ def convert_to_tensors_and_broadcast(
|
||||
args_Nd.append(c.expand(*expand_sizes))
|
||||
|
||||
return args_Nd
|
||||
|
||||
|
||||
def ndc_grid_sample(
|
||||
input: torch.Tensor,
|
||||
grid_ndc: torch.Tensor,
|
||||
**grid_sample_kwargs,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Samples a tensor `input` of shape `(B, dim, H, W)` at 2D locations
|
||||
specified by a tensor `grid_ndc` of shape `(B, ..., 2)` using
|
||||
the `torch.nn.functional.grid_sample` function.
|
||||
`grid_ndc` is specified in PyTorch3D NDC coordinate frame.
|
||||
|
||||
Args:
|
||||
input: The tensor of shape `(B, dim, H, W)` to be sampled.
|
||||
grid_ndc: A tensor of shape `(B, ..., 2)` denoting the set of
|
||||
2D locations at which `input` is sampled.
|
||||
See [1] for a detailed description of the NDC coordinates.
|
||||
grid_sample_kwargs: Additional arguments forwarded to the
|
||||
`torch.nn.functional.grid_sample` call. See the corresponding
|
||||
docstring for a listing of the corresponding arguments.
|
||||
|
||||
Returns:
|
||||
sampled_input: A tensor of shape `(B, dim, ...)` containing the samples
|
||||
of `input` at 2D locations `grid_ndc`.
|
||||
|
||||
References:
|
||||
[1] https://pytorch3d.org/docs/cameras
|
||||
"""
|
||||
|
||||
batch, *spatial_size, pt_dim = grid_ndc.shape
|
||||
if batch != input.shape[0]:
|
||||
raise ValueError("'input' and 'grid_ndc' have to have the same batch size.")
|
||||
if input.ndim != 4:
|
||||
raise ValueError("'input' has to be a 4-dimensional Tensor.")
|
||||
if pt_dim != 2:
|
||||
raise ValueError("The last dimension of 'grid_ndc' has to be == 2.")
|
||||
|
||||
grid_ndc_flat = grid_ndc.reshape(batch, -1, 1, 2)
|
||||
|
||||
grid_flat = ndc_to_grid_sample_coords(grid_ndc_flat, input.shape[2:])
|
||||
|
||||
sampled_input_flat = torch.nn.functional.grid_sample(
|
||||
input, grid_flat, **grid_sample_kwargs
|
||||
)
|
||||
|
||||
sampled_input = sampled_input_flat.reshape([batch, input.shape[1], *spatial_size])
|
||||
|
||||
return sampled_input
|
||||
|
||||
|
||||
def ndc_to_grid_sample_coords(
|
||||
xy_ndc: torch.Tensor,
|
||||
image_size_hw: Tuple[int, int],
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Convert from the PyTorch3D's NDC coordinates to
|
||||
`torch.nn.functional.grid_sampler`'s coordinates.
|
||||
|
||||
Args:
|
||||
xy_ndc: Tensor of shape `(..., 2)` containing 2D points in the
|
||||
PyTorch3D's NDC coordinates.
|
||||
image_size_hw: A tuple `(image_height, image_width)` denoting the
|
||||
height and width of the image tensor to sample.
|
||||
Returns:
|
||||
xy_grid_sample: Tensor of shape `(..., 2)` containing 2D points in the
|
||||
`torch.nn.functional.grid_sample` coordinates.
|
||||
"""
|
||||
if len(image_size_hw) != 2 or any(s <= 0 for s in image_size_hw):
|
||||
raise ValueError("'image_size_hw' has to be a 2-tuple of positive integers")
|
||||
aspect = min(image_size_hw) / max(image_size_hw)
|
||||
xy_grid_sample = -xy_ndc # first negate the coords
|
||||
if image_size_hw[0] >= image_size_hw[1]:
|
||||
xy_grid_sample[..., 1] *= aspect
|
||||
else:
|
||||
xy_grid_sample[..., 0] *= aspect
|
||||
return xy_grid_sample
|
||||
|
||||
Reference in New Issue
Block a user