mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 03:42:50 +08:00
Use sample_pdf from PyTorch3D in NeRF
Summary: Use PyTorch3D's new faster sample_pdf function instead of local Python implementation. Also clarify deps for the Python implementation. Reviewed By: gkioxari Differential Revision: D30512109 fbshipit-source-id: 84cfdc00313fada37a6b29837de96f6a4646434f
This commit is contained in:
parent
d2bbd0cdb7
commit
1251446383
@ -9,7 +9,6 @@ This project implements the Neural Radiance Fields (NeRF) from [1].
|
||||
Installation
|
||||
------------
|
||||
1) [Install PyTorch3D](https://github.com/facebookresearch/pytorch3d/blob/main/INSTALL.md)
|
||||
- Note that this repo requires `PyTorch` version `>= v1.6.0` due to dependency on `torch.searchsorted`.
|
||||
|
||||
2) Install other dependencies:
|
||||
- [`visdom`](https://github.com/facebookresearch/visdom)
|
||||
|
@ -10,8 +10,7 @@ from typing import List
|
||||
import torch
|
||||
from pytorch3d.renderer import MonteCarloRaysampler, NDCGridRaysampler, RayBundle
|
||||
from pytorch3d.renderer.cameras import CamerasBase
|
||||
|
||||
from .utils import sample_pdf
|
||||
from pytorch3d.renderer.implicit.sample_pdf import sample_pdf
|
||||
|
||||
|
||||
class ProbabilisticRaysampler(torch.nn.Module):
|
||||
|
@ -7,71 +7,6 @@
|
||||
import torch
|
||||
|
||||
|
||||
def sample_pdf(
|
||||
bins: torch.Tensor,
|
||||
weights: torch.Tensor,
|
||||
N_samples: int,
|
||||
det: bool = False,
|
||||
eps: float = 1e-5,
|
||||
):
|
||||
"""
|
||||
Samples a probability density functions defined by bin edges `bins` and
|
||||
the non-negative per-bin probabilities `weights`.
|
||||
|
||||
Note: This is a direct conversion of the TensorFlow function from the original
|
||||
release [1] to PyTorch.
|
||||
|
||||
Args:
|
||||
bins: Tensor of shape `(..., n_bins+1)` denoting the edges of the sampling bins.
|
||||
weights: Tensor of shape `(..., n_bins)` containing non-negative numbers
|
||||
representing the probability of sampling the corresponding bin.
|
||||
N_samples: The number of samples to draw from each set of bins.
|
||||
det: If `False`, the sampling is random. `True` yields deterministic
|
||||
uniformly-spaced sampling from the inverse cumulative density function.
|
||||
eps: A constant preventing division by zero in case empty bins are present.
|
||||
|
||||
Returns:
|
||||
samples: Tensor of shape `(..., N_samples)` containing `N_samples` samples
|
||||
drawn from each set probability distribution.
|
||||
|
||||
Refs:
|
||||
[1] https://github.com/bmild/nerf/blob/55d8b00244d7b5178f4d003526ab6667683c9da9/run_nerf_helpers.py#L183 # noqa E501
|
||||
"""
|
||||
|
||||
# Get pdf
|
||||
weights = weights + eps # prevent nans
|
||||
pdf = weights / weights.sum(dim=-1, keepdim=True)
|
||||
cdf = torch.cumsum(pdf, -1)
|
||||
cdf = torch.cat([torch.zeros_like(cdf[..., :1]), cdf], -1)
|
||||
|
||||
# Take uniform samples
|
||||
if det:
|
||||
u = torch.linspace(0.0, 1.0, N_samples, device=cdf.device, dtype=cdf.dtype)
|
||||
u = u.expand(list(cdf.shape[:-1]) + [N_samples]).contiguous()
|
||||
else:
|
||||
u = torch.rand(
|
||||
list(cdf.shape[:-1]) + [N_samples], device=cdf.device, dtype=cdf.dtype
|
||||
)
|
||||
|
||||
# Invert CDF
|
||||
inds = torch.searchsorted(cdf, u, right=True)
|
||||
below = (inds - 1).clamp(0)
|
||||
above = inds.clamp(max=cdf.shape[-1] - 1)
|
||||
inds_g = torch.stack([below, above], -1).view(
|
||||
*below.shape[:-1], below.shape[-1] * 2
|
||||
)
|
||||
|
||||
cdf_g = torch.gather(cdf, -1, inds_g).view(*below.shape, 2)
|
||||
bins_g = torch.gather(bins, -1, inds_g).view(*below.shape, 2)
|
||||
|
||||
denom = cdf_g[..., 1] - cdf_g[..., 0]
|
||||
denom = torch.where(denom < eps, torch.ones_like(denom), denom)
|
||||
t = (u - cdf_g[..., 0]) / denom
|
||||
samples = bins_g[..., 0] + t * (bins_g[..., 1] - bins_g[..., 0])
|
||||
|
||||
return samples
|
||||
|
||||
|
||||
def calc_mse(x: torch.Tensor, y: torch.Tensor):
|
||||
"""
|
||||
Calculates the mean square error between tensors `x` and `y`.
|
||||
|
@ -75,14 +75,15 @@ def sample_pdf_python(
|
||||
This is a pure python implementation of the `sample_pdf` function.
|
||||
It may be faster than sample_pdf when the number of bins is very large,
|
||||
because it behaves as O(batchsize * [n_bins + log(n_bins) * n_samples] )
|
||||
whereas sample_pdf behaves as O(batchsize * n_bins * n_samples).
|
||||
whereas sample_pdf behaves as O(batchsize * n_bins * n_samples).
|
||||
For 64 bins sample_pdf is much faster.
|
||||
|
||||
Samples probability density functions defined by bin edges `bins` and
|
||||
the non-negative per-bin probabilities `weights`.
|
||||
|
||||
Note: This is a direct conversion of the TensorFlow function from the original
|
||||
release [1] to PyTorch.
|
||||
release [1] to PyTorch. It requires PyTorch 1.6 or greater due to the use of
|
||||
torch.searchsorted.
|
||||
|
||||
Args:
|
||||
bins: Tensor of shape `(..., n_bins+1)` denoting the edges of the sampling bins.
|
||||
|
@ -12,6 +12,7 @@ from common_testing import TestCaseMixin
|
||||
from pytorch3d.renderer.implicit.sample_pdf import sample_pdf, sample_pdf_python
|
||||
|
||||
|
||||
@unittest.skipIf(torch.__version__[:4] == "1.5.", "searchsorted needs PyTorch 1.6")
|
||||
class TestSamplePDF(TestCaseMixin, unittest.TestCase):
|
||||
def setUp(self) -> None:
|
||||
super().setUp()
|
||||
|
Loading…
x
Reference in New Issue
Block a user