mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-12-22 07:10:34 +08:00
spelling
Summary: Collection of spelling things, mostly in docs / tutorials. Reviewed By: gkioxari Differential Revision: D26101323 fbshipit-source-id: 652f62bc9d71a4ff872efa21141225e43191353a
This commit is contained in:
committed by
Facebook GitHub Bot
parent
c2e62a5087
commit
124bb5e391
@@ -511,7 +511,7 @@ def quaternion_to_axis_angle(quaternions):
|
||||
def rotation_6d_to_matrix(d6: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Converts 6D rotation representation by Zhou et al. [1] to rotation matrix
|
||||
using Gram--Schmidt orthogonalisation per Section B of [1].
|
||||
using Gram--Schmidt orthogonalization per Section B of [1].
|
||||
Args:
|
||||
d6: 6D rotation representation, of size (*, 6)
|
||||
|
||||
|
||||
@@ -190,7 +190,7 @@ class Transform3d:
|
||||
|
||||
def compose(self, *others):
|
||||
"""
|
||||
Return a new Transform3d with the tranforms to compose stored as
|
||||
Return a new Transform3d with the transforms to compose stored as
|
||||
an internal list.
|
||||
|
||||
Args:
|
||||
@@ -254,7 +254,7 @@ class Transform3d:
|
||||
independently without composing them.
|
||||
|
||||
Returns:
|
||||
A new Transform3D object contaning the inverse of the original
|
||||
A new Transform3D object containing the inverse of the original
|
||||
transformation.
|
||||
"""
|
||||
|
||||
@@ -302,7 +302,7 @@ class Transform3d:
|
||||
Args:
|
||||
points: Tensor of shape (P, 3) or (N, P, 3)
|
||||
eps: If eps!=None, the argument is used to clamp the
|
||||
last coordinate before peforming the final division.
|
||||
last coordinate before performing the final division.
|
||||
The clamping corresponds to:
|
||||
last_coord := (last_coord.sign() + (last_coord==0)) *
|
||||
torch.clamp(last_coord.abs(), eps),
|
||||
@@ -681,7 +681,7 @@ def _broadcast_bmm(a, b):
|
||||
b: torch tensor of shape (N, K, K)
|
||||
|
||||
Returns:
|
||||
a and b broadcast multipled. The output batch dimension is max(N, M).
|
||||
a and b broadcast multiplied. The output batch dimension is max(N, M).
|
||||
|
||||
To broadcast transforms across a batch dimension if M != N then
|
||||
expect that either M = 1 or N = 1. The tensor with batch dimension 1 is
|
||||
|
||||
Reference in New Issue
Block a user