mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-12-21 06:40:35 +08:00
spelling
Summary: Collection of spelling things, mostly in docs / tutorials. Reviewed By: gkioxari Differential Revision: D26101323 fbshipit-source-id: 652f62bc9d71a4ff872efa21141225e43191353a
This commit is contained in:
committed by
Facebook GitHub Bot
parent
c2e62a5087
commit
124bb5e391
@@ -77,7 +77,7 @@ def generate_eval_video_cameras(
|
||||
cam_centers_c = cam_centers - plane_mean[None]
|
||||
|
||||
if up is not None:
|
||||
# us the up vector instad of the plane through the camera centers
|
||||
# us the up vector instead of the plane through the camera centers
|
||||
plane_normal = torch.FloatTensor(up)
|
||||
else:
|
||||
cov = (cam_centers_c.t() @ cam_centers_c) / cam_centers_c.shape[0]
|
||||
@@ -99,7 +99,7 @@ def generate_eval_video_cameras(
|
||||
traj = traj @ e_vec.t() + plane_mean[None]
|
||||
|
||||
else:
|
||||
raise ValueError(f"Uknown trajectory_type {trajectory_type}.")
|
||||
raise ValueError(f"Unknown trajectory_type {trajectory_type}.")
|
||||
|
||||
# point all cameras towards the center of the scene
|
||||
R, T = look_at_view_transform(
|
||||
|
||||
@@ -42,7 +42,7 @@ class HarmonicEmbedding(torch.nn.Module):
|
||||
)`
|
||||
|
||||
Note that `x` is also premultiplied by the base frequency `omega0`
|
||||
before evaluting the harmonic functions.
|
||||
before evaluating the harmonic functions.
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
|
||||
@@ -169,7 +169,7 @@ class NeuralRadianceField(torch.nn.Module):
|
||||
|
||||
Returns:
|
||||
rays_densities: A tensor of shape `(minibatch, ..., num_points_per_ray, 1)`
|
||||
denoting the opacitiy of each ray point.
|
||||
denoting the opacity of each ray point.
|
||||
rays_colors: A tensor of shape `(minibatch, ..., num_points_per_ray, 3)`
|
||||
denoting the color of each ray point.
|
||||
"""
|
||||
|
||||
@@ -266,7 +266,7 @@ class RadianceFieldRenderer(torch.nn.Module):
|
||||
image: torch.Tensor,
|
||||
) -> Tuple[dict, dict]:
|
||||
"""
|
||||
Performs the coarse and fine rendering passees of the radiance field
|
||||
Performs the coarse and fine rendering passes of the radiance field
|
||||
from the viewpoint of the input `camera`.
|
||||
Afterwards, both renders are compared to the input ground truth `image`
|
||||
by evaluating the peak signal-to-noise ratio and the mean-squared error.
|
||||
|
||||
@@ -36,7 +36,7 @@ class EmissionAbsorptionNeRFRaymarcher(EmissionAbsorptionRaymarcher):
|
||||
rays_features: Per-ray feature values represented with a tensor
|
||||
of shape `(..., n_points_per_ray, feature_dim)`.
|
||||
eps: A lower bound added to `rays_densities` before computing
|
||||
the absorbtion function (cumprod of `1-rays_densities` along
|
||||
the absorption function (cumprod of `1-rays_densities` along
|
||||
each ray). This prevents the cumprod to yield exact 0
|
||||
which would inhibit any gradient-based learning.
|
||||
|
||||
@@ -44,7 +44,7 @@ class EmissionAbsorptionNeRFRaymarcher(EmissionAbsorptionRaymarcher):
|
||||
features: A tensor of shape `(..., feature_dim)` containing
|
||||
the rendered features for each ray.
|
||||
weights: A tensor of shape `(..., n_points_per_ray)` containing
|
||||
the ray-specific emission-absorbtion distribution.
|
||||
the ray-specific emission-absorption distribution.
|
||||
Each ray distribution `(..., :)` is a valid probability
|
||||
distribution, i.e. it contains non-negative values that integrate
|
||||
to 1, such that `weights.sum(dim=-1)==1).all()` yields `True`.
|
||||
|
||||
Reference in New Issue
Block a user