taubin smoothing

Summary: Taubin Smoothing for filtering meshes and making them smoother. Taubin smoothing is an iterative approach.

Reviewed By: nikhilaravi

Differential Revision: D24751149

fbshipit-source-id: fb779e955f1a1f6750e704f1b4c6dfa37aebac1a
This commit is contained in:
Georgia Gkioxari
2020-11-30 11:36:36 -08:00
committed by Facebook GitHub Bot
parent fc7a4cacc3
commit 112959e087
3 changed files with 158 additions and 0 deletions

View File

@@ -0,0 +1,74 @@
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
import unittest
import torch
from common_testing import TestCaseMixin, get_random_cuda_device
from pytorch3d.ops import taubin_smoothing
from pytorch3d.ops.mesh_filtering import norm_laplacian
from pytorch3d.structures import Meshes
from pytorch3d.utils import ico_sphere
class TestTaubinSmoothing(TestCaseMixin, unittest.TestCase):
def setUp(self) -> None:
super().setUp()
torch.manual_seed(1)
def test_taubin(self):
N = 3
device = get_random_cuda_device()
mesh = ico_sphere(4, device).extend(N)
ico_verts = mesh.verts_padded()
ico_faces = mesh.faces_padded()
rand_noise = torch.rand_like(ico_verts) * 0.2 - 0.1
z_mask = (ico_verts[:, :, -1] > 0).view(N, -1, 1)
rand_noise = rand_noise * z_mask
verts = ico_verts + rand_noise
mesh = Meshes(verts=verts, faces=ico_faces)
smooth_mesh = taubin_smoothing(mesh, num_iter=50)
smooth_verts = smooth_mesh.verts_padded()
smooth_dist = (smooth_verts - ico_verts).norm(dim=-1).mean()
dist = (verts - ico_verts).norm(dim=-1).mean()
self.assertTrue(smooth_dist < dist)
def test_norm_laplacian(self):
V = 32
F = 64
device = get_random_cuda_device()
# random vertices
verts = torch.rand((V, 3), dtype=torch.float32, device=device)
# random valid faces (no self circles, e.g. (v0, v0, v1))
faces = torch.stack([torch.randperm(V) for f in range(F)], dim=0)[:, :3]
faces = faces.to(device=device)
mesh = Meshes(verts=[verts], faces=[faces])
edges = mesh.edges_packed()
eps = 1e-12
L = norm_laplacian(verts, edges, eps=eps)
Lnaive = torch.zeros((V, V), dtype=torch.float32, device=device)
for f in range(F):
f0, f1, f2 = faces[f]
v0 = verts[f0]
v1 = verts[f1]
v2 = verts[f2]
w12 = 1.0 / ((v1 - v2).norm() + eps)
w02 = 1.0 / ((v0 - v2).norm() + eps)
w01 = 1.0 / ((v0 - v1).norm() + eps)
Lnaive[f0, f1] = w01
Lnaive[f1, f0] = w01
Lnaive[f0, f2] = w02
Lnaive[f2, f0] = w02
Lnaive[f1, f2] = w12
Lnaive[f2, f1] = w12
self.assertClose(L.to_dense(), Lnaive)