mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-12-19 22:00:35 +08:00
taubin smoothing
Summary: Taubin Smoothing for filtering meshes and making them smoother. Taubin smoothing is an iterative approach. Reviewed By: nikhilaravi Differential Revision: D24751149 fbshipit-source-id: fb779e955f1a1f6750e704f1b4c6dfa37aebac1a
This commit is contained in:
committed by
Facebook GitHub Bot
parent
fc7a4cacc3
commit
112959e087
74
tests/test_mesh_filtering.py
Normal file
74
tests/test_mesh_filtering.py
Normal file
@@ -0,0 +1,74 @@
|
||||
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
|
||||
|
||||
|
||||
import unittest
|
||||
|
||||
import torch
|
||||
from common_testing import TestCaseMixin, get_random_cuda_device
|
||||
from pytorch3d.ops import taubin_smoothing
|
||||
from pytorch3d.ops.mesh_filtering import norm_laplacian
|
||||
from pytorch3d.structures import Meshes
|
||||
from pytorch3d.utils import ico_sphere
|
||||
|
||||
|
||||
class TestTaubinSmoothing(TestCaseMixin, unittest.TestCase):
|
||||
def setUp(self) -> None:
|
||||
super().setUp()
|
||||
torch.manual_seed(1)
|
||||
|
||||
def test_taubin(self):
|
||||
N = 3
|
||||
device = get_random_cuda_device()
|
||||
|
||||
mesh = ico_sphere(4, device).extend(N)
|
||||
ico_verts = mesh.verts_padded()
|
||||
ico_faces = mesh.faces_padded()
|
||||
|
||||
rand_noise = torch.rand_like(ico_verts) * 0.2 - 0.1
|
||||
z_mask = (ico_verts[:, :, -1] > 0).view(N, -1, 1)
|
||||
rand_noise = rand_noise * z_mask
|
||||
verts = ico_verts + rand_noise
|
||||
mesh = Meshes(verts=verts, faces=ico_faces)
|
||||
|
||||
smooth_mesh = taubin_smoothing(mesh, num_iter=50)
|
||||
smooth_verts = smooth_mesh.verts_padded()
|
||||
|
||||
smooth_dist = (smooth_verts - ico_verts).norm(dim=-1).mean()
|
||||
dist = (verts - ico_verts).norm(dim=-1).mean()
|
||||
self.assertTrue(smooth_dist < dist)
|
||||
|
||||
def test_norm_laplacian(self):
|
||||
V = 32
|
||||
F = 64
|
||||
device = get_random_cuda_device()
|
||||
# random vertices
|
||||
verts = torch.rand((V, 3), dtype=torch.float32, device=device)
|
||||
# random valid faces (no self circles, e.g. (v0, v0, v1))
|
||||
faces = torch.stack([torch.randperm(V) for f in range(F)], dim=0)[:, :3]
|
||||
faces = faces.to(device=device)
|
||||
mesh = Meshes(verts=[verts], faces=[faces])
|
||||
edges = mesh.edges_packed()
|
||||
|
||||
eps = 1e-12
|
||||
|
||||
L = norm_laplacian(verts, edges, eps=eps)
|
||||
|
||||
Lnaive = torch.zeros((V, V), dtype=torch.float32, device=device)
|
||||
for f in range(F):
|
||||
f0, f1, f2 = faces[f]
|
||||
v0 = verts[f0]
|
||||
v1 = verts[f1]
|
||||
v2 = verts[f2]
|
||||
|
||||
w12 = 1.0 / ((v1 - v2).norm() + eps)
|
||||
w02 = 1.0 / ((v0 - v2).norm() + eps)
|
||||
w01 = 1.0 / ((v0 - v1).norm() + eps)
|
||||
|
||||
Lnaive[f0, f1] = w01
|
||||
Lnaive[f1, f0] = w01
|
||||
Lnaive[f0, f2] = w02
|
||||
Lnaive[f2, f0] = w02
|
||||
Lnaive[f1, f2] = w12
|
||||
Lnaive[f2, f1] = w12
|
||||
|
||||
self.assertClose(L.to_dense(), Lnaive)
|
||||
Reference in New Issue
Block a user